文章目录
- 和为K的子数组
- 和可被k整除的子数组
- 连续数组
- 矩阵区域和
一定要看懂算法原理之后写代码,博主大概率因注意力不够,看了好多遍,才看懂原理细节。
 切记,不彻底懂原理,千万别看代码
和为K的子数组

class Solution {
public:
    int subarraySum(vector<int>& nums, int k) {
        int ans = 0;
        int n = nums.size();
        unordered_map<int, int> hash;
        int sum = 0;
        hash[sum]++;//整个前缀和为K
        for(int i = 0; i < n; ++i){
            sum += nums[i];
            //ans += hash[sum - k];
            if(hash.count(sum - k))    ans += hash[sum - k]; // 小优化
            hash[sum]++;
        } 
        return ans;
    }
};
和可被k整除的子数组

class Solution {
public:
    int subarraysDivByK(vector<int>& nums, int k) {
        int ans = 0;
        int sum = 0;
        unordered_map<int, int> hash;
        hash[sum]++;
        for (auto& e : nums) {
            sum += e;
            int r = (sum % k + k) % k;
            if (hash.count(r))
                ans += hash[r];
            hash[r]++;
        }
        return ans;
    }
};
连续数组
class Solution {
public:
    int findMaxLength(vector<int>& nums) {
        unordered_map<int, int> hash;
        int sum = 0;
        hash[sum] = -1;
        int ans = 0;
        for (int i = 0; i < nums.size(); ++i) {
            sum += nums[i] == 0 ? -1 : 1;
            if (hash.count(sum))
                ans = max(ans, i - hash[sum]);
            else
                hash[sum] = i;
        }
        return ans;
    }
};
矩阵区域和
class Solution {
public:
    vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) {
        int m = mat.size(), n = mat[0].size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        vector<vector<int>> arr(m, vector<int>(n));
        for (int i = 1; i < m + 1; ++i) {
            for (int j = 1; j < n + 1; ++j) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] +
                           mat[i - 1][j - 1];
            }
        }
        for (int i = 1; i < m + 1; ++i) {
            for (int j = 1; j < n + 1; ++j) {
                int up = max(i - k - 1, 0), down = min(m, i + k);
                int left = max(j - k - 1, 0), right = min(n, j + k);
                arr[i - 1][j - 1] = dp[down][right] - dp[up][right] -
                                    dp[down][left] +
                                    dp[up][left];
            }
        }
        return arr;
    }
};



















