目录
1 -> 红黑树
1.1 -> 红黑树的概念
1.2 -> 红黑树的性质
1.3 -> 红黑树节点的定义
1.4 -> 红黑树的结构
1.5 -> 红黑树的插入操作
1.6 -> 红黑树的验证
1.8 -> 红黑树与AVL树的比较
2 -> 红黑树模拟实现STL中的map与set
2.1 -> 红黑树的迭代器
2.2 -> 改造红黑树
2.3 -> map的模拟实现
2.4 -> set的模拟实现

1 -> 红黑树
1.1 -> 红黑树的概念
红黑树,是一种二叉搜索树,但在每个节点上增加了一个存储位表示节点的颜色,可以是Red或Black。通过对任何一条从根到叶子的路径上各个节点着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是接近平衡的。

1.2 -> 红黑树的性质
- 每个节点不是红色就是黑色。
 - 根节点是黑色的。
 - 如果一个节点是红色的,则它的两个孩子节点是黑色的。
 - 对于每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。
 - 每个叶子节点都是黑色的(此处的叶子节点指空节点)。
 
1.3 -> 红黑树节点的定义
#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
// 节点的颜色
enum Color 
{ 
	RED, BLACK 
};
// 红黑树节点的定义
template<class ValueType>
struct RBTreeNode
{
	RBTreeNode(const ValueType& data = ValueType(),Color color = RED)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _color(color)
	{}
	RBTreeNode<ValueType>* _pLeft;   // 节点的左孩子
	RBTreeNode<ValueType>* _pRight;  // 节点的右孩子
	RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)
	ValueType _data; // 节点的值域
	Color _color;    // 节点的颜色
}; 
1.4 -> 红黑树的结构
为了后续实现关联式容器更加简单,红黑树的实现中增加一个头节点,因为根节点必须是黑色的,为了与根节点区分开,将头节点给成黑色,并且让头节点的pParent域指向红黑树的根节点,pLeft域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点。

1.5 -> 红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可以分为两步:
1. 按照二叉搜索树的树规则插入新节点。
template<class ValueType>
struct RBTree
{
	bool Insert(const ValueType& data)
	{
		PNode& pRoot = GetRoot();
		if (nullptr == pRoot)
		{
			pRoot = new Node(data, BLACK);
			// 根的双亲为头节点
			pRoot->_pParent = _pHead;
			_pHead->_pParent = pRoot;
		}
		else
		{
			// 1. 按照二叉搜索的树方式插入新节点
			// 2. 检测新节点插入后,红黑树的性质是否造到破坏,
			//    若满足直接退出,否则对红黑树进行旋转着色处理
		}
		// 根节点的颜色可能被修改,将其改回黑色
		pRoot->_color = BLACK;
		_pHead->_pLeft = LeftMost();
		_pHead->_pRight = RightMost();
		return true;
	}
private:
	PNode& GetRoot()
	{
		return _pHead->_pParent;
	}
	// 获取红黑树中最小节点,即最左侧节点
	PNode LeftMost();
	// 获取红黑树中最大节点,即最右侧节点
	PNode RightMost();
private:
	PNode _pHead;
} 
2. 检测新节点插入后,红黑树的性质是否遭到破坏。
因为新节点的默认颜色为红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树的任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三,即不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
- 情况一:cur为红,p为红,g为黑,u存在且为红。
 
注意:此处看到的树可能是一棵完整的树,也可能是一棵子树。

如果g是根节点,调整完成后,需要将g改为黑色。
如果g是子树,g一定有双亲,且g的双亲如果是红色,就需要继续向上调整。

cur和p均为红,违反了性质三。
解决方法:将p、u改为黑,g改为红,然后把g当成cur,继续向上调整。
- 情况二:cur为红,p为红,g为黑,u不存在/u存在且为黑。
 

说明:
- 如果u节点不存在,则cur一定是新插入节点,因为如果cur不是新插入节点,则cur和p一定有一个节点的颜色是黑色,就不满足性质4:每条路径黑色节点个数相同。
 - 如果u节点存在,则其一定是黑色的,那么cur节点原来的颜色一定是黑色的,现在看到其是红色的原因是因为cur的子树在调整的过程中将cur节点的颜色由黑色改成了红色。
 
p为g的左孩子,cur为p的左孩子,则进行右单旋转。
p为g的右孩子,cur为p的右孩子,则进行左单旋转。
p、g变色——p变黑,g变红。
- 情况三:cur为红,p为红,g为黑,u不存在/u存在且为黑。
 

p为g的左孩子,cur为p的右孩子,则针对p进行左单旋转。
p为g的右孩子,cur为p的左孩子,则针对p进行右单旋转。
则转换成情况二。
针对每种情况进行相应的处理即可。
bool Insert(const ValueType& data)
{
	// ...
	// 新节点插入后,如果其双亲节点的颜色为空色,则违反性质3:不能有连在一起的红色结点
		while (pParent && RED == pParent->_color)
		{
			// 注意:grandFather一定存在
			// 因为pParent存在,且不是黑色节点,则pParent一定不是根,则其一定有双亲
			PNode grandFather = pParent->_pParent;
			// 先讨论左侧情况
			if (pParent == grandFather->_pLeft)
			{
				PNode unclue = grandFather->_pRight;
				// 情况三:叔叔节点存在,且为红
				if (unclue && RED == unclue->_color)
				{
					pParent->_color = BLACK;
					unclue->_color = BLACK;
					grandFather->_color = RED;
					pCur = grandFather;
					pParent = pCur->_pParent;
				}
				else
				{
					// 情况五:叔叔节点不存在,或者叔叔节点存在且为黑
					if (pCur == pParent->_pRight)
					{
						_RotateLeft(pParent);
						swap(pParent, pCur);
					}
					// 情况五最后转化成情况四
					grandFather->_color = RED;
					pParent->_color = BLACK;
					_RotateRight(grandFather);
				}
			}
			else
			{
				// …
			}
		}
	// ...
} 
1.6 -> 红黑树的验证
红黑树的检测分为两步:
- 检测其是否满足二叉搜索树(中序遍历是否为有序序列)。
 - 检测其是否满足红黑树的性质。
 
bool IsValidRBTree()
	{
		PNode pRoot = GetRoot();
		// 空树也是红黑树
		if (nullptr == pRoot)
			return true;
		// 检测根节点是否满足情况
		if (BLACK != pRoot->_color)
		{
			cout << "违反红黑树性质二:根节点必须为黑色" << endl;
			return false;
		}
		// 获取任意一条路径中黑色节点的个数
		size_t blackCount = 0;
		PNode pCur = pRoot;
		while (pCur)
		{
			if (BLACK == pCur->_color)
				blackCount++;
			pCur = pCur->_pLeft;
		}
		// 检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数
		size_t k = 0;
		return _IsValidRBTree(pRoot, k, blackCount);
	}
	bool _IsValidRBTree(PNode pRoot, size_t k, const size_t blackCount)
	{
		//走到null之后,判断k和black是否相等
		if (nullptr == pRoot)
		{
			if (k != blackCount)
			{
				cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;
				return false;
			}
			return true;
		}
		// 统计黑色节点的个数
		if (BLACK == pRoot->_color)
			k++;
		// 检测当前节点与其双亲是否都为红色
		PNode pParent = pRoot->_pParent;
		if (pParent && RED == pParent->_color && RED == pRoot->_color)
		{
			cout << "违反性质三:没有连在一起的红色节点" << endl;
			return false;
		}
		return _IsValidRBTree(pRoot->_pLeft, k, blackCount) &&
			_IsValidRBTree(pRoot->_pRight, k, blackCount);
	} 
1.8 -> 红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(n),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以在实际运用中红黑树更多。
2 -> 红黑树模拟实现STL中的map与set
2.1 -> 红黑树的迭代器
迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代器,需要考虑以下问题:
- begin()和end()
 
STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后,可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪里呢?能否给成nullptr呢?
答案是行不通的,因为对end()位置的迭代器进行--操作,必须要能找到最后一个元素,此处就不行,因此最好的方式是将end()放在头节点的位置:

- operator++()与operator--()
 
// 找迭代器的下一个节点,下一个节点肯定比其大
	void Increasement()
	{
		//分两种情况讨论:_pNode的右子树存在和不存在
		// 右子树存在
		if (_pNode->_pRight)
		{
			// 右子树中最小的节点,即右子树中最左侧节点
			_pNode = _pNode->_pRight;
			while (_pNode->_pLeft)
				_pNode = _pNode->_pLeft;
		}
		else
		{
			// 右子树不存在,向上查找,直到_pNode != pParent->right
			PNode pParent = _pNode->_pParent;
			while (pParent->_pRight == _pNode)
			{
				_pNode = pParent;
				pParent = _pNode->_pParent;
			}
			// 特殊情况:根节点没有右子树
			if (_pNode->_pRight != pParent)
				_pNode = pParent;
		}
	}
	// 获取迭代器指向节点的前一个节点
	void Decreasement()
	{
		//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不
		存在
			// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置
			if (_pNode->_pParent->_pParent == _pNode && _pNode->_color == RED)
				_pNode = _pNode->_pRight;
			else if (_pNode->_pLeft)
			{
				// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点
				_pNode = _pNode->_pLeft;
				while (_pNode->_pRight)
					_pNode = _pNode->_pRight;
			}
			else
			{
				// _pNode的左子树不存在,只能向上找
				PNode pParent = _pNode->_pParent;
				while (_pNode == pParent->_pLeft)
				{
					_pNode = pParent;
					pParent = _pNode->_pParent;
				}
				_pNode = pParent;
			}
	} 
2.2 -> 改造红黑树
#pragma once
// set ->key
// map ->key/value
enum Colour
{
	RED,
	BLACK
};
template<class T>
struct RBTreeNode
{
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	T _data;
	Colour _col;
	RBTreeNode(const T& data)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(data)
		, _col(RED)
	{}
};
template<class T>
struct __TreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef __TreeIterator<T> Self;
	Node* _node;
	__TreeIterator(Node* node)
		:_node(node)
	{}
	T& operator*()
	{
		return _node->_data;
	}
	T* operator->()
	{
		return &_node->_data;
	}
	Self& operator--();
	Self& operator++()
	{
		if (_node->_right)
		{
			// 下一个就是右子树的最左节点
			Node* cur = _node->_right;
			while (cur->_left)
			{
				cur = cur->_left;
			}
			_node = cur;
		}
		else
		{
			// 左子树 根 右子树
			// 右为空,找孩子是父亲左的那个祖先
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = parent;
				parent = parent->_parent;
			}
			_node = parent;
		}
		return *this;
	}
	bool operator!=(const Self& s)
	{
		return _node != s._node;
	}
	bool operator==(const Self& s)
	{
		return _node == s._node;
	}
};
// set->RBTree<K, K, SetKeyOfT> _t;
// map->RBTree<K, pair<K, T>, MapKeyOfT> _t;
template<class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef __TreeIterator<T> iterator;
	iterator begin()
	{
		Node* cur = _root;
		while (cur && cur->_left)
		{
			cur = cur->_left;
		}
		return iterator(cur);
	}
	iterator end()
	{
		return iterator(nullptr);
	}
	pair<iterator, bool> Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return make_pair(iterator(_root), true);
		}
		Node* parent = nullptr;
		Node* cur = _root;
		KeyOfT kot;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(iterator(cur), false);
			}
		}
		// 新增节点给红色
		cur = new Node(data);
		Node* newnode = cur;
		cur->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (parent == grandfather->_left)
			{
				//     g
				//   p   u
				// c
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					// 继续往上更新处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_left)
					{
						// 单旋
						//     g
						//   p
						// c
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						// 双旋
						//     g
						//   p
						//     c
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else  // parent == grandfather->_right
			{
				//     g
				//   u   p 
				//          c
				//
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//     g
						//   u   p 
						//     c
						//
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
		}
		_root->_col = BLACK;
		return make_pair(iterator(newnode), true);
	}
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		subR->_left = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subR;
		if (subRL)
			subRL->_parent = parent;
		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		Node* parentParent = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;
		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
	}
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;
		_InOrder(root->_left);
		cout << root->_kv.first << " ";
		_InOrder(root->_right);
	}
	// 根节点->当前节点这条路径的黑色节点的数量
	bool Check(Node* root, int blacknum, const int refVal)
	{
		if (root == nullptr)
		{
			//cout << balcknum << endl;
			if (blacknum != refVal)
			{
				cout << "存在黑色节点数量不相等的路径" << endl;
				return false;
			}
			return true;
		}
		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "有连续的红色节点" << endl;
			return false;
		}
		if (root->_col == BLACK)
		{
			++blacknum;
		}
		return Check(root->_left, blacknum, refVal)
			&& Check(root->_right, blacknum, refVal);
	}
	bool IsBalance()
	{
		if (_root == nullptr)
			return true;
		if (_root->_col == RED)
			return false;
		//参考值
		int refVal = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				++refVal;
			}
			cur = cur->_left;
		}
		int blacknum = 0;
		return Check(_root, blacknum, refVal);
	}
	int Height()
	{
		return _Height(_root);
	}
	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}
	size_t Size()
	{
		return _Size(_root);
	}
	size_t _Size(Node* root)
	{
		if (root == NULL)
			return 0;
		return _Size(root->_left)
			+ _Size(root->_right) + 1;
	}
	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return NULL;
	}
private:
	Node* _root = nullptr;
};
 
2.3 -> map的模拟实现
map的底层结构就是红黑树,因此在map中直接封装一棵红黑树,然后将其接口包装下即可。
#pragma once
#include"RBTree.h"
namespace fyd
{
	template<class K, class V>
	class map
	{
	public:
		struct MapKeyOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};
		// 对类模板取内嵌类型,加typename告诉编译器这里是类型
		typedef typename RBTree<K, pair<K, V>, MapKeyOfT>::iterator iterator;
		iterator begin()
		{
			return _t.begin();
		}
		iterator end()
		{
			return _t.end();
		}
		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}
		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}
		
	private:
		RBTree<K, pair<K, V>, MapKeyOfT> _t;
	};
}
 
2.4 -> set的模拟实现
set的底层为红黑树,因此只需在set内部封装一棵红黑树,即可将该容器实现出来。
#pragma once
#include"RBTree.h"
namespace fyd
{
	template<class K>
	class set
	{
	public:
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
		typedef typename RBTree<K, K, SetKeyOfT>::iterator iterator;
		iterator begin()
		{
			return _t.begin();
		}
		iterator end()
		{
			return _t.end();
		}
		pair<iterator, bool> insert(const K& key)
		{
			return _t.Insert(key);
		}
	private:
		RBTree<K, K, SetKeyOfT> _t;
	};
}
 
感谢各位大佬支持!!!
互三啦!!!


















