
文章目录
一、快速排序
#include<iostream>
using namespace std;
const int N = 1e6 + 10;
int n;
int q[N];
void quick_sort(int q[], int l, int r)
{
//此时区间只有一个数或者没有数不需要排序了
if (l >= r) return;
int x = q[l], i = l - 1, j = r + 1;
while (i < j)
{
do ++i; while (q[i] < x);
do --j; while (q[j] > x);
if (i < j) {
int temp = q[i];
q[i] = q[j];
q[j] = temp;
}
}
quick_sort(q, l, j);
quick_sort(q, j + 1, r);
}
int main()
{
//关于快速排序:第一点就是确定分界点:q[l],q[(l+r)/2],q[r]为分界点都是可以
//调整范围: 将区间分为左右两侧,左边的小于等于分界点,右边的大于等于分界点
//最后再递归左右区间即可
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%d", &q[i]);
quick_sort(q, 0, n - 1);
for (int i = 0; i < n; i++) printf("%d ", q[i]);
return 0;
}
二、归并排序
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10;
int a[N], tmp[N];
void Merge_sort(int a[], int l, int r)
{
if (l >= r) return;
int mid = (l + r) >> 1;
//先分后合
Merge_sort(a, l, mid);
Merge_sort(a, mid + 1, r);
int i = l, j = mid + 1, k = 0;
//归并
while (i <= mid && j <= r)
{
if (a[i] <= a[j]) tmp[k++] = a[i++];
else tmp[k++] = a[j++];
}
//续尾
while (i <= mid) tmp[k++] = a[i++];
while (j <= r) tmp[k++] = a[j++];
for (i = l, j = 0; i <= r;)
a[i++] = tmp[j++];
}
int main()
{
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
Merge_sort(a, 0, n - 1);
for (int i = 0; i < n; i++) printf("%d ", a[i]);
return 0;
}
三、整数二分
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1e5 + 10;
int n;
int q[N];
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int x;
cin >> n>>x;
for (int i = 0; i < n; i++)
cin >> q[i];
//第一种二分模板
//int l = 0, r = n - 1;
//while (l < r) {
// int mid = l + r >> 1;
// if (q[mid] >= x) r = mid;
// else
// l = mid + 1;
//}
//第二种模板
int l = 0, r = n - 1;
while (l < r) {
int mid = (l + r + 1) >> 1;
if (q[mid] <= x) l = mid ;
else
r = mid-1;
}
cout << l << endl;
return 0;
}
四、浮点数二分
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
double x;
cin >> x;
double l = 0, r = x;
while (r - l > 1e-8){
double mid = (l + r) /2;
if (mid * mid >= x) r = mid;
else
l = mid;
}
cout << l << endl;
return 0;
}