1.概念
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
它的左右子树也分别为二叉搜索树

int[] array ={5,3,4,1,7,8,2,6,0,9};
2.操作-查找

2.1实现
结点定义与实现
public class BinarySearchTree {
    public static class Node {
        int key;
        Node left;
        Node right;
        public Node(int key) {
            this.key = key;
        }
    }
    private Node root = null;
   //在搜索树中查找 key ,如果找到 ,返回 key 所在的结点 ,否则返回 null  
    public Node search(int key) {
        Node cur = root;
        while (cur != null) {
            if (key == cur.key) {
                return cur;
            } else if (key < cur.key) {
                cur = cur.left;
            } else {
                cur = cur.right;
            }
        }
        return null;
    }
}
3.操作-插入
1. 如果树为空树,即根 == null,直接插入

2. 如果树不是空树,按照查找逻辑确定插入位置,插入新结点
parent记录cur的上一个结点!

3.1插入实现
    public boolean insert(int key) {
        if (root == null) {
            root = new Node(key);
            return true;
        }
        Node cur = root;
        Node parent = null;
        while (cur != null) {
            //不能有一样的key
            if (key == cur.key) {
                return false;
            } else if (key < cur.key) {
                parent = cur;
                cur = cur.left;
            } else {
                parent = cur;
                cur = cur.right;
            }
        }
        Node node = new Node(key);
        if (key < parent.key) {
            parent.left = node;
        } else {
            parent.right = node;
        }
        return true;
    }4.操作-删除(难点)
设待删除结点为 cur, 待删除结点的双亲结点为 parent
1. cur.left == null
   

       
2. cur.right == null
1. cur 是 root,则 root = cur.left

2. cur 不是 root ,cur 是 parent.left,则 parent.left = cur.left

3. cur 不是 root ,cur 是 parent.right,则 parent.right = cur.left

3. cur.left != null && cur.right != null
需要使用替换法进行删除,即在它的右子树中寻找中序下的第一个结点 (关键码最小),用它的值填补到被删除结点中,再来处理该结点的删除问题
例如需要删除结点10


以右边为例,将右边的最小值13覆盖cur,因为13是最小值所以没有左树,因此可以按上面左树为空进行删除。

还要多判断一次t和tp的关系(特殊情况)
如果t = tp.right 则tp.right = t.right
4.1删除实现
  public void removeNode(int key) {
        TreeNode cur = root;
        TreeNode parent = null;
        while (cur != null) {
            if(cur.val < key) {
                parent = cur;
                cur = cur.right;
            }else if(cur.val > key) {
                parent = cur;
                cur = cur.left;
            }else {
                remove(cur,parent);
                return;
            }
        }
    }
    /**
     * 删除cur这个节点
     * @param cur 要删除的节点
     * @param parent 要删除的节点的父节点
     */
    private void remove(TreeNode cur, TreeNode parent) {
        if(cur.left == null) {
            if(cur == root) {
                root = cur.right;
            }else if(cur == parent.left) {
                parent.left = cur.right;
            }else {
                parent.right = cur.right;
            }
        }else if(cur.right == null) {
            if(cur == root) {
                root = cur.left;
            }else if(parent.left == cur) {
                parent.left = cur.left;
            }else {
                parent.right = cur.left;
            }
        }else {
            //cur的左右两边 都不为空 !!
            TreeNode targetParent = cur;
            TreeNode target = cur.right;
            while (target.left != null) {
                targetParent = target;
                target = target.left;
            }
            cur.val = target.val;
            if(target == targetParent.left) {
                targetParent.left = target.right;
            }else {
                targetParent.right = target.right;
            }
        }
    }5.性能分析
插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。
对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度 的函数,即结点越深,则比较次数越多。
但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

最优情况下,二叉搜索树为完全二叉树,其平均比较次数为: log2N
最差情况下,二叉搜索树退化为单支树,其平均比较次数为: N/2
 
 



















