基于R语言实现的beta二项回归模型【理解与实现】

news2025/5/22 23:16:06

本实验,创建一组使用二项分布模拟的数据(不带额外的随机性),和另一组使用Beta二项分布模拟的数据(引入了随机成功概率 p,从而增加了数据的离散性。

现在假设我们站在上帝视角,有两组不知道分布的数据。

一、如何理解:“观察到的方差大于二项分布预期的方差”

1.生成二项分布数据(不带额外的随机性)

set.seed(123)  # 确保结果可重现
n <- 100  # 样本大小
p_fixed <- 0.5  # 固定的成功概率
trials <- 100  # 每次试验的总次数

# 生成数据
binomial_data <- rbinom(n, trials, p_fixed)

2. 生成Beta二项分布数据(引入随机性的成功概率)

# Beta分布参数
alpha <- 2
beta <- 5

# 生成成功概率
p_random <- rbeta(n, alpha, beta)

# 使用Beta生成的成功概率生成数据
beta_binomial_data <- rbinom(n, trials, p_random)

3. 计算并比较两组数据的方差

# 计算实际方差
var_binomial <- var(binomial_data)
var_beta_binomial <- var(beta_binomial_data)

# 计算二项分布预期的方差
expected_var_binomial <- trials * p_fixed * (1 - p_fixed)

# 打印结果
print(paste("方差 - 二项分布数据:", var_binomial))
print(paste("方差 - Beta二项分布数据:", var_beta_binomial))
print(paste("预期方差 - 标准二项分布:", expected_var_binomial))

你会发现Beta二项分布数据的方差通常会大于二项分布数据的方差,因为Beta二项分布引入的成功概率的随机性增加了数据的离散性。同时,你也会发现这个方差大于标准二项分布预期的方差,这正是我们需要使用Beta二项模型的原因。

4.可视化

# 加载必要的库
library(ggplot2)

# 创建数据框
df <- data.frame(
  Data_Type = c(rep("Binomial", length(binomial_data)), rep("Beta-Binomial", length(beta_binomial_data))),
  Count = c(binomial_data, beta_binomial_data)
)

# 绘制直方图
ggplot(df, aes(x = Count, fill = Data_Type)) +
  geom_histogram(position = "identity", alpha = 0.7, bins = 20) +
  labs(title = "Histogram of Binomial vs Beta-Binomial Data",
       x = "Count", y = "Frequency") +
  theme_minimal()

在这里插入图片描述
从直方图可以看出,Beta-Binomial 数据的分布更加广泛,呈现出更大的离散性,相比之下,Binomial 数据更加集中。这符合我们的预期,因为Beta-Binomial 数据引入了成功概率的随机性,增加了数据的变异性。

二、使用Beta二项分布模型主要涉及数据的拟合与分析过程

解释 VAGM

1.完整代码

# 加载必要的库
if (!require("VGAM")) install.packages("VGAM", dependencies = TRUE)
library(VGAM)

# 生成模拟数据
set.seed(123)  # 设置随机数种子以确保结果可重现
n <- 100  # 样本大小
alpha <- 2  # Beta分布参数α
beta <- 5   # Beta分布参数β
trials <- sample(10:100, n, replace = TRUE)  # 每个观察的试验次数
p <- rbeta(n, alpha, beta)  # 从Beta分布生成成功概率
success <- rbinom(n, trials, p)  # 生成成功次数

data <- data.frame(success = success, trials = trials, predictor1 = rnorm(n), predictor2 = runif(n))

# 拟合Beta二项回归模型
model <- vglm(cbind(success, trials - success) ~ predictor1 + predictor2, 
              family = betabinomial(link = "logit"), 
              data = data)

# 查看模型摘要
summary(model)

# 模型诊断
par(mfrow = c(2, 2))
plot(model)

# 模型预测
new_data <- data.frame(predictor1 = c(0, 1), predictor2 = c(0.5, 0.5))
predictions <- predict(model, newdata = new_data, type = "response")
print(predictions)

导出结果解释

1.数据的形式

在这里插入图片描述
响应变量:成功次数和失败次数(Trials-success),
预测变量:predictor1 & predictor2

2.model 拟合结果

在这里插入图片描述
注意:
当我们拟合Beta二项分布时,模型实际上是在估计两个参数:成功概率p 的平均值和分布的离散程度。由于Beta分布是由两个参数控制的,这两个参数通常用不同的链接函数进行转换。
在这种情况下,每个链接函数可能有自己的截距,因此输出中显示了两个截距。

(Intercept):1 — 通常代表与成功概率 p 相关的截距项。
(Intercept):2 — 代表与Beta分布的离散参数相关的截距项。
忽略 参数的显著性

3.模型诊断

在这里插入图片描述
模型诊断图是统计建模中的一个重要组成部分,它们可以帮助我们识别模型中的问题,比如不符合假设的数据、异常值或模型拟合不良。
总体上:

从这些诊断图来看,模型似乎没有表现出明显的拟合问题。残差分布比较均匀,没有明显的模式,也没有迹象显示数据点有不适当的杠杆效应。
具体地:

  • Pearson残差 vs. 线性预测器1:
    这个图显示了每个观测值的Pearson残差与第一个预测变量的线性预测值的关系。理想情况下,这些点应该随机分布,没有明显的模式。从图中看,残差似乎随着预测值的增加而稍微减小,但没有明显的趋势,。然而,这里没有强烈的模式或明显的异常值。

  • Pearson残差 vs. Jittered线性预测器2:
    “Jittered”意味着在横轴的值上添加了一点随机噪声,以避免重叠点。这个图表应该类似于第一个图表,展示残差和第二个预测变量的关系。残差似乎在预测器2的中间范围内聚集得更紧密,这可能表明在这个范围内模型预测更准确。

  • Pearson残差 vs. hat值(Linear Predictor 1):
    帽子值(也称为杠杆值)度量了每个观测值对其自身预测值的影响程度。较高的hat值可能表明一个观测值具有较高的杠杆作用,可能是一个影响模型的异常值。图中hat值较高的点不多,意味着没有单个观测值对模型有过度影响。

  • Pearson残差 vs. hat值(Linear Predictor 2):
    这个图展示的是第二个预测变量的值。同样,我们希望没有观测值有过大的hat值。大多数观测值似乎有低到中等的hat值,没有迹象表明有单个观测对模型有过度影响。

模型预测

在这里插入图片描述

# 2.代码解释

解释代码
生成模拟数据:使用Beta分布参数 α=2 和 β=5 来模拟真实的成功概率 p。
为每个观察生成一个试验次数,并基于模拟的 p 生成成功次数。
拟合模型:
使用vglm函数从VGAM包拟合Beta二项模型,其中响应变量是成功和失败的次数,解释变量是predictor1predictor2
查看和解释模型摘要:
调用summary()函数来获取模型的详细输出,包括估计的参数和它们的统计显著性。
模型诊断:

使用plot()函数生成模型的诊断图,这有助于检查任何潜在的问题,如拟合不良或异常值。
模型预测:

对新的观察数据(在new_data中定义)进行预测,以展示模型如何应用于实际数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1593720.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【可能是全网最丝滑的LangChain教程】七、LCEL表达式语言

系列文章地址 【可能是全网最丝滑的LangChain教程】一、LangChain介绍-CSDN博客 【可能是全网最丝滑的LangChain教程】二、LangChain安装-CSDN博客 【可能是全网最丝滑的LangChain教程】三、快速入门LLM Chain-CSDN博客 【可能是全网最丝滑的LangChain教程】四、快速入门Re…

Oracle ORA-28547:connection to server failed,probable Oracle Net admin error

使用Navicat连接oracle数据库时报ORA-28547错误 因为Navicat自带的oci.dll并不支持oracle11g&#xff0c;需要去官网下载支持的版本。 1.去oracle下载对应的oci.dll文件 下载地址&#xff1a;Oracle Instant Client Downloads 可以用 11.2.0.4 2. 复制刚下载下来的instant…

【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波(文末附3个算法源码)

效果: MPU6050姿态解算-卡尔曼滤波+四元数+互补滤波 目录 基础知识详解 欧拉角

嵌入式第三天:(C语言入门)

目录 一、跳转关键字 break&#xff1a; continue&#xff1a; goto&#xff1a; 二、函数 概述&#xff1a; 函数的使用&#xff1a; 无参无返回值&#xff1a; 有参无返回值&#xff1a; 有参有返回值&#xff1a; 返回值注意点&#xff1a; 函数的声明&#xff…

微信跳转页面时发生报错

报错如下图所示&#xff1a; 解决方法&#xff1a;&#xff08;从下面四种跳转方式中任选一种&#xff0c;哪种能实现效果就用哪个&#xff09; 带历史回退 wx.navigateTo() //不能跳转到tabbar页面 不带历史回退 wx.redirectTo() //跳转到另一个页面wx.switchTab() //只能…

Linux: softirq 简介

文章目录 1. 前言2. softirq 实现2.1 softirq 初始化2.1.1 注册各类 softirq 处理接口2.1.2 创建 softirq 处理线程 2.2 softirq 的 触发 和 处理2.1.1 softirq 触发2.1.2 softirq 处理2.1.2.1 在 中断上下文 处理 softirq2.1.2.2 在 ksoftirqd 内核线程上下文 处理 softirq 3.…

[lesson26]类的静态成员函数

类的静态成员函数 静态成员函数 在C中可以定义静态成员函数 静态成员函数是类中特殊的成员函数静态成员函数属于整个类所有可以通过类名直接访问公有静态成员函数可以通过对象名访问公有静态成员函数 静态成员函数的定义 直接通过static关键字修饰成员函数 静态成员函数 vs…

4.Godot图片素材的获取和编辑

游戏开发中经常遇到图片素材的需求 1. 图片素材的准备 术语&#xff1a;Sprite 精灵&#xff0c;游戏开发中指一张图片来源不明的图片&#xff0c;切勿在商业用途使用&#xff0c;以免引起版权风险。 1. 在学习阶段&#xff0c;可以百度或者从一些资源网站获取&#xff0c;这…

Unity类银河恶魔城学习记录12-13 p135 Merge Skill Tree with Dogge skill源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili​​​​​​​ Inventory.cs using System.Collections.Generic; using Un…

分布式结构化数据表Bigtable

文章目录 设计动机与目标数据模型行列时间戳 系统架构主服务器Chubby作用子表服务器SSTable结构子表实际组成子表地址组成子表数据存储及读/写操作数据压缩 性能优化局部性群组&#xff08;Locality groups&#xff09;压缩布隆过滤器 Bigtable是Google开发的基于GFS和Chubby的…

Apple:叠加提示 - 高效的 RAG 优化方式

发表机构&#xff1a;Apple 本文介绍了一种新的检索增强生成&#xff08;RAG&#xff09;提示方法——叠加提示&#xff08;superposition prompting&#xff09;&#xff0c;该方法可以直接应用于预训练的基于变换器的大模型&#xff08;LLMs&#xff09;&#xff0c;无需微调…

cmake制作并链接动静态库

cmake制作并链接动静态库 制作静态库add_library(库名称 STATIC 源文件1 [源文件2] ...)LIBRARY_OUTPUT_PATH指定库的生成路径 制作动态库add_library(库名称 SHARED 源文件1 [源文件2] ...) 连接动静态库link_libraries连接静态库link_directories到哪个路径去找库target_link…

ssh爆破服务器的ip-疑似肉鸡

最近发现自己的ssh一直有一些人企图使用ssh暴力破解的方式进行密码破解.就查看了一下,真是网络安全太可怕了. 大家自己的服务器密码还是要设置好,管好,做好最基本的安全措施,不然最后只能沦为肉鸡. ssh登陆日志可以在/var/log下看到,ubuntu的话为auth.log,centos为secure文件 查…

ubuntu 应用程序设置 开机自启动

1. 通过.desktop方式 autostart 中.desktop 配置文件 1.1 用户级自启动 登录后才可以启动服务。 可视化配置&#xff1a;在ubuntu自带的可视化程序来配置&#xff0c;就是StartupApplications&#xff0c;它在启动台中可以找到。 在ubuntu下目录是 ~/.config/autostart 添…

kotlin项目引用

概要&#xff1a; 记录项目引用kotlin具体事项 1 object下build.gradle buildscript {//声明引用版本ext.kotlin_version "1.4.20"repositories {google()mavenCentral()}dependencies {classpath "com.android.tools.build:gradle:4.2.0"//引用kotlinc…

DataX案例,MongoDB数据导入HDFS与MySQL

【尚硅谷】Alibaba开源数据同步工具DataX技术教程_哔哩哔哩_bilibili 目录 1、MongoDB 1.1、MongoDB介绍 1.2、MongoDB基本概念解析 1.3、MongoDB中的数据存储结构 1.4、MongoDB启动服务 1.5、MongoDB小案例 2、DataX导入导出案例 2.1、读取MongoDB的数据导入到HDFS 2…

Ubuntu去除烦人的顶部【活动】按钮

文章目录 一、需求说明二、打开 extensions 网站三、安装 GNOME Shell 插件四、安装本地连接器五、安装 Hide Activities Button 插件六、最终效果七、卸载本地连接器命令参考 本文所使用的 Ubuntu 系统版本是 Ubuntu 22.04 ! 一、需求说明 使用 Ubuntu 的过程中&#xff0c;屏…

【网络编程】高性能并发服务器源码剖析

hello &#xff01;大家好呀&#xff01; 欢迎大家来到我的网络编程系列之洪水网络攻击&#xff0c;在这篇文章中&#xff0c;你将会学习到在网络编程中如何搭建一个高性能的并发服务器&#xff0c;并且我会给出源码进行剖析&#xff0c;以及手绘UML图来帮助大家来理解&#xf…

机器学习—特征工程(三)

什么是特征工程 特征工程是使用专业背景知识和技巧处理数据&#xff0c;使得特征能在机器学习算法上发挥更好的作用的过程。 意义︰会直接影响机器学习的效果 特征工程的位置与数据处理的比较 pandas:—个数据读取非常方便以及基本的处理格式的工具sklearn:对于特征的处理提…

鹏哥C语言复习——数据存储

目录 版本差异&#xff1a; 数据类型&#xff1a; 进制表示&#xff1a; 大小端储存&#xff1a; 数据运算&#xff1a; 浮点型在内存中的存储&#xff1a; 版本差异&#xff1a; debug和release的区别&#xff1a; 在栈区开辟地址一般是先从高地址开辟 debug创建数组和单…