书生·浦语2.0(InternLM2)大模型实战--Day03 LMDeploy量化部署 | LLMVLM实战

news2025/5/24 13:28:55

在这里插入图片描述

  • 课程视频:https://www.bilibili.com/video/BV1tr421x75B/
  • 课程文档:https://github.com/InternLM/Tutorial/blob/camp2/lmdeploy/README.md
  • 课程作业:https://github.com/InternLM/Tutorial/blob/camp2/lmdeploy/homework.md
  • 平台:InternLM-studio

1.LMDeploy环境部署

1.1 InternStudio创建conda环境

InternStudio开发机创建conda环境(推荐)
由于环境依赖项存在torch,下载过程可能比较缓慢。InternStudio上提供了快速创建conda环境的方法。打开命令行终端,创建一个名为lmdeploy的环境:

studio-conda -t lmdeploy -o pytorch-2.1.2
环境创建成功后,提示如下:
在这里插入图片描述

1.2 本地环境创建conda环境

注意,如果你在上一步已经在InternStudio开发机上创建了conda环境,这一步就没必要执行了。

详情
打开命令行终端,让我们来创建一个名为lmdeploy的conda环境,python版本为3.10。

conda create -n lmdeploy -y python=3.10
环境创建成功后,提示如下:
在这里插入图片描述

1.3 安装LMDeploy

接下来,激活刚刚创建的虚拟环境。安装0.3.0版本的lmdeploy。

conda activate lmdeploy
pip install lmdeploy[all]==0.3.0

等待安装结束就OK了!

2 LMDeploy模型对话(chat)

2.1 Huggingface与TurboMind

HuggingFace

HuggingFace是一个高速发展的社区,包括Meta、Google、Microsoft、Amazon在内的超过5000家组织机构在为HuggingFace开源社区贡献代码、数据集和模型。可以认为是一个针对深度学习模型和数据集的在线托管社区,如果你有数据集或者模型想对外分享,网盘又不太方便,就不妨托管在HuggingFace。

托管在HuggingFace社区的模型通常采用HuggingFace格式存储,简写为HF格式。

但是HuggingFace社区的服务器在国外,国内访问不太方便。国内可以使用阿里巴巴的MindScope社区,或者上海AI Lab搭建的OpenXLab社区,上面托管的模型也通常采用HF格式。

TurboMind

TurboMind是LMDeploy团队开发的一款关于LLM推理的高效推理引擎,它的主要功能包括:LLaMa
结构模型的支持,continuous batch 推理模式和可扩展的 KV 缓存管理器。

TurboMind推理引擎仅支持推理TurboMind格式的模型。因此,TurboMind在推理HF格式的模型时,会首先自动将HF格式模型转换为TurboMind格式的模型。该过程在新版本的LMDeploy中是自动进行的,无需用户操作。

几个容易迷惑的点:

  • TurboMind与LMDeploy的关系:LMDeploy是涵盖了LLM
    任务全套轻量化、部署和服务解决方案的集成功能包,TurboMind是LMDeploy的一个推理引擎,是一个子模块。LMDeploy也可以使用pytorch作为推理引擎。
  • TurboMind与TurboMind模型的关系:TurboMind是推理引擎的名字,TurboMind模型是一种模型存储格式

,TurboMind引擎只能推理TurboMind格式的模型。

2.2 下载模型

本次实战营已经在开发机的共享目录中准备好了常用的预训练模型,可以运行如下命令查看:

ls /root/share/new_models/Shanghai_AI_Laboratory/

显示如下,每一个文件夹都对应一个预训练模型。
在这里插入图片描述
以InternLM2-Chat-1.8B模型为例,从官方仓库下载模型。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

我换一个问题
在这里插入图片描述
额额,过于离谱。。

以命令行方式与模型对话
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.LMDeploy模型量化(Lite)

本部分内容主要介绍如何对模型进行量化。主要包括 KV8量化和W4A16量化。总的来说,量化是一种以参数或计算中间结果精度下降换空间节省(以及同时带来的性能提升)的策略。

正式介绍 LMDeploy 量化方案前,需要先介绍两个概念:

  • 计算密集(compute-bound): 指推理过程中,绝大部分时间消耗在数值计算上;针对计算密集型场景,可以通过使用更快的硬件计算单元来提升计算速。
  • 访存密集(memory-bound): 指推理过程中,绝大部分时间消耗在数据读取上针对访存密集型场景,一般通过减少访存次数、提高计算访存比或降低访存量来优化。

常见的 LLM 模型由于 Decoder Only 架构的特性,实际推理时大多数的时间都消耗在了逐 Token 生成阶段(Decoding 阶段),是典型的访存密集型场景。

那么,如何优化 LLM 模型推理中的访存密集问题呢? 我们可以使用KV8量化W4A16量化

  • KV8量化是指将逐 Token(Decoding)生成过程中的上下文 K 和 V 中间结果进行 INT8 量化(计算时再反量化),以降低生成过程中的显存占用。
  • W4A16 量化,将 FP16 的模型权重量化为 INT4,Kernel 计算时,访存量直接降为 FP16 模型的 1/4,大幅降低了访存成本。Weight Only 是指仅量化权重,数值计算依然采用 FP16(需要将 INT4 权重反量化)。

3.1 设置最大KV Cache缓存大小

KV Cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,KV Cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,KV Cache全部存储于显存,以加快访存速度。当显存空间不足时,也可以将KV Cache放在内存,通过缓存管理器控制将当前需要使用的数据放入显存。

模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、KV Cache占用的显存,以及中间运算结果占用的显存。LMDeploy的KV Cache管理器可以通过设置--cache-max-entry-count参数,控制KV缓存占用剩余显存的最大比例。(默认的比例为0.8)

设置不同比例,运行对话,查看右上角资源监视器中的显存占用情况

# 首先保持不加该参数(默认0.8),运行1.8B模型。
lmdeploy chat /root/internlm2-chat-1_8b

# 改变--cache-max-entry-count参数,设为0.5。
lmdeploy chat /root/internlm2-chat-1_8b --cache-max-entry-count 0.5

# 把--cache-max-entry-count参数设置为0.01,约等于禁止KV Cache占用显存。
lmdeploy chat /root/internlm2-chat-1_8b --cache-max-entry-count 0.01

显存占用分别为7816M 、6660M 、 4904M
在这里插入图片描述
显然,该参数可以降低缓存,但代价是降低模型推理速度。

3.2 使用W4A16量化

LMDeploy使用AWQ算法,实现模型4bit权重量化。推理引擎TurboMind提供了非常高效的4bit推理cuda kernel,性能是FP16的2.4倍以上。它支持以下NVIDIA显卡:

  • 图灵架构(sm75):20系列、T4
  • 安培架构(sm80,sm86):30系列、A10、A16、A30、A100
  • Ada Lovelace架构(sm90):40 系列

运行前,首先安装一个依赖库。

pip install einops==0.7.0

仅需执行一条命令,就可以完成模型量化工作。

lmdeploy lite auto_awq \
   /root/internlm2-chat-1_8b \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 1024 \
  --w-bits 4 \
  --w-group-size 128 \
  --work-dir /root/internlm2-chat-1_8b-4bit

运行时间较长,请耐心等待。量化工作结束后,新的HF模型被保存到internlm2-chat-1_8b-4bit目录。(请记住这个目录,后面改成量W4A16时需要用到)

为了更加明显体会到W4A16的作用,我们将KV Cache比例再次调为0.01,查看显存占用情况。

lmdeploy chat /root/internlm2-chat-1_8b-4bit --model-format awq --cache-max-entry-count 0.01

在这里插入图片描述
可以看到,显存占用变为2436MB,明显降低。

进阶作业
1.设置KV Cache最大占用比例为0.4,开启W4A16量化,以命令行方式与模型对话。
在这里插入图片描述
在这里插入图片描述

4.LMDeploy服务(serve)

在第二章和第三章,我们都是在本地直接推理大模型,这种方式成为本地部署。在生产环境下,我们有时会将大模型封装为API接口服务,供客户端访问。

我们来看下面一张架构图:
在这里插入图片描述

我们把从架构上把整个服务流程分成下面几个模块。

  • 模型推理/服务。主要提供模型本身的推理,一般来说可以和具体业务解耦,专注模型推理本身性能的优化。可以以模块、API等多种方式提供。 API
  • Server。中间协议层,把后端推理/服务通过HTTP,gRPC或其他形式的接口,供前端调用。
  • Client。可以理解为前端,与用户交互的地方。通过通过网页端/命令行去调用API接口,获取模

型推理/服务。
值得说明的是,以上的划分是一个相对完整的模型,但在实际中这并不是绝对的。比如可以把“模型推理”和“API Server”合并,有的甚至是三个流程打包在一起提供服务。

4.1 启动API服务器

通过以下命令启动API服务器,推理internlm2-chat-1_8b模型:

lmdeploy serve api_server \
    /root/internlm2-chat-1_8b \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

其中,model-format、quant-policy这些参数是与第三章中量化推理模型一致的;server-name和server-port表示API服务器的服务IP与服务端口;tp参数表示并行数量(GPU数量)。

通过运行以上指令,我们成功启动了API服务器,请勿关闭该窗口,后面我们要新建客户端连接该服务。

可以通过运行一下指令,查看更多参数及使用方法:

lmdeploy serve api_server -h

在这里插入图片描述

也可以直接打开http://{host}:23333查看接口的具体使用说明,如下图所示。
在这里插入图片描述

4.2 命令行客户端连接API服务器

在“4.1”中,我们在终端里新开了一个API服务器。

本节中,我们要新建一个命令行客户端去连接API服务器。首先通过VS Code新建一个终端:
在这里插入图片描述
激活conda环境。
运行命令行客户端:

lmdeploy serve api_client http://localhost:23333

运行后,可以通过命令行窗口直接与模型对话:
在这里插入图片描述
现在使用的架构是这样的:
在这里插入图片描述

4.3 网页客户端连接API服务器

关闭刚刚的VSCode终端,但服务器端的终端不要关闭。

新建一个VSCode终端,激活conda环境。
使用Gradio作为前端,启动网页客户端。

conda activate lmdeploy
lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

注意,这一步由于Server在远程服务器上,所以本地需要做一下ssh转发才能直接访问。在你本地打开一个cmd窗口,输入命令如下:

ssh -CNg -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p <你的ssh端口号>

在这里插入图片描述
然后打开浏览器,访问http://127.0.0.1:23333
然后就可以与模型进行对话了!
在这里插入图片描述
在这里插入图片描述
现在使用的架构是这样的:
在这里插入图片描述

进阶作业
2.以API Server方式启动 lmdeploy,开启 W4A16量化,调整KV Cache的占用比例为0.4,分别使用命令行客户端与Gradio网页客户端与模型对话。

【步骤1】以API Server方式启动 lmdeploy,开启 W4A16量化,调整KV Cache的占用比例为0.4,有三处要改哈!

  • 模型路径:原/root/internlm2-chat-1_8b,改为/root/internlm2-chat-1_8b-4bit
  • 模型格式model-format:原hf,改为awq
  • 加KV Cache比例参数:指定cache-max-entry-count 0.4

代码如下,

lmdeploy serve api_server \
    /root/internlm2-chat-1_8b-4bit \
    --model-format awq \
    --cache-max-entry-count 0.4 \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1 

在这里插入图片描述
【步骤2】使用命令行客户端与模型对话
启动后,同 章节4.2 的操作,运行起命令行客户端即可
在这里插入图片描述

【步骤3】使用Gradio网页客户端与模型对话
启动后,同 章节4.3 的操作,运行起Gradio网页客户端即可
在这里插入图片描述

5.Python代码集成

在开发项目时,有时我们需要将大模型推理集成到Python代码里面。

5.1 Python代码集成运行1.8B模型

新建pipeline.py,填入以下内容。

from lmdeploy import pipeline

pipe = pipeline('/root/internlm2-chat-1_8b')
response = pipe(['Hi, pls intro yourself', '上海是'])
print(response)

代码解读
第1行,引入lmdeploy的pipeline模块
第3行,从目录“./internlm2-chat-1_8b”加载HF模型
第4行,运行pipeline,这里采用了批处理的方式,用一个列表包含两个输入,lmdeploy同时推理两个输入,产生两个输出结果,结果返回给response
第5行,输出response

保存后运行代码文件:

python /root/pipeline.py

在这里插入图片描述

5.2 向TurboMind后端传递参数

在第3章,我们通过向lmdeploy传递附加参数,实现模型的量化推理,及设置KV Cache最大占用比例。在Python代码中,可以通过创建TurbomindEngineConfig,向lmdeploy传递参数。

以设置KV Cache占用比例为例,新建python文件pipeline_kv.py,填入如下内容:

from lmdeploy import pipeline, TurbomindEngineConfig

# 调低 k/v cache内存占比调整为总显存的 20%
backend_config = TurbomindEngineConfig(cache_max_entry_count=0.2)

pipe = pipeline('/root/internlm2-chat-1_8b',
                backend_config=backend_config)
response = pipe(['Hi, pls intro yourself', '上海是'])
print(response)

运行python代码:

python /root/pipeline_kv.py

在这里插入图片描述

进阶作业
3.使用W4A16量化,调整KV Cache的占用比例为0.4,使用Python代码集成的方式运行internlm2-chat-1.8b模型。

新建pipeline_kv2.py,修改红框中的3处位置

from lmdeploy import pipeline, TurbomindEngineConfig

# 使用W4A16量化
# 调低 k/v cache内存占比调整为总显存的 40%
backend_config = TurbomindEngineConfig(model_format='awq',cache_max_entry_count=0.4)

# 修改模型位置
pipe = pipeline('/root/internlm2-chat-1_8b-4bit',
                backend_config=backend_config)
response = pipe(['Hi, pls intro yourself', '上海是'])
print(response)

在这里插入图片描述

6.拓展部分

6.1 使用LMDeploy运行视觉多模态大模型llava

最新版本的LMDeploy支持了llava多模态模型。运行本pipeline最低需要30%的InternStudio开发机

安装llava依赖库

conda activate lmdeploy

pip install git+https://github.com/haotian-liu/LLaVA.git@4e2277a060da264c4f21b364c867cc622c945874

新建一个python文件pipeline_llava.py,填入内容如下:

from lmdeploy.vl import load_image
from lmdeploy import pipeline, TurbomindEngineConfig


backend_config = TurbomindEngineConfig(session_len=8192) # 图片分辨率较高时请调高session_len
# pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config) 非开发机运行此命令
pipe = pipeline('/share/new_models/liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config)

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

代码解读:

第1行引入了lmdeploy的pipeline模块,第2行引入用于载入图片的load_image函数
第5行创建了pipeline实例
第7行从github下载了一张关于老虎的图片,如下:
在这里插入图片描述
第8行运行pipeline,输入提示词“describe this image”,和图片,结果返回至response
第9行输出response

运行pipeline

python /root/pipeline_llava.py

在这里插入图片描述

我的回答的翻译是:这是一张老虎趴在草地上的彩色照片。老虎正对着镜头,眼睛睁得大大的,目光直视前方。它的头部突出,有深色的竖条纹,皮毛是典型的橙色和黑色混合色。老虎的耳朵竖起,嘴微微张开,给人一种轻松而又警惕的感觉。背景是模糊的,暗示着绿树成荫的自然环境。图片上没有明显的文字或特殊标志

我们也可以通过Gradio来运行llava模型。新建python文件gradio_llava.py,填入以下内容:

import gradio as gr
from lmdeploy import pipeline, TurbomindEngineConfig


backend_config = TurbomindEngineConfig(session_len=8192) # 图片分辨率较高时请调高session_len
# pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config) 非开发机运行此命令
pipe = pipeline('/share/new_models/liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config)

def model(image, text):
    if image is None:
        return [(text, "请上传一张图片。")]
    else:
        response = pipe((text, image)).text
        return [(text, response)]

demo = gr.Interface(fn=model, inputs=[gr.Image(type="pil"), gr.Textbox()], outputs=gr.Chatbot())
demo.launch()   

运行python程序。

python /root/gradio_llava.py

通过ssh转发一下7860端口。

ssh -CNg -L 7860:127.0.0.1:7860 root@ssh.intern-ai.org.cn -p <你的ssh端口>

通过浏览器访问 http://127.0.0.1:7860

然后就可以使用啦~
在这里插入图片描述

进阶作业
4.使用 LMDeploy 运行视觉多模态大模型 llava gradio demo
在这里插入图片描述在这里插入图片描述

6.2 使用LMDeploy运行第三方大模型

LMDeploy不仅支持运行InternLM系列大模型,还支持其他第三方大模型。支持的模型列表如下:
在这里插入图片描述
可以从Modelscope,OpenXLab下载相应的HF模型,下载好HF模型,下面的步骤就和使用LMDeploy运行InternLM2一样啦~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1593458.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

记一次IP访问MySQL失败多次被自动锁定导致无法连接问题,解决方法一条SQL足以。

&#x1f469;&#x1f3fd;‍&#x1f4bb;个人主页&#xff1a;阿木木AEcru &#x1f525; 系列专栏&#xff1a;《Docker容器化部署系列》 《Java每日面筋》 &#x1f4b9;每一次技术突破&#xff0c;都是对自我能力的挑战和超越。 前言 今天下午还在带着耳机摸鱼&#xff…

Acrobat Pro DC 2021---PDF编辑与管理,打造高效PDF工作流程 含Mac+win

Acrobat Pro DC 2021包括全面的PDF编辑、OCR识别、多种输出格式转换以及强大的文件安全性保护。用户可轻松编辑、合并、转换PDF文件&#xff0c;同时支持将扫描文档转换为可编辑的PDF。可将PDF转换为Word、Excel、PowerPoint等格式&#xff0c;提高工作效率。 Mac电脑&#xf…

Java中volatile关键字

保证了不同线程对这个变量进行操作时的可见性&#xff0c;即一个线程修改了某个变量的值&#xff0c;这新值对其他线程来说是立即可见的,volatile关键字会强制将修改的值立即写入主存。 1.volatile的可见性 一个典型的例子&#xff1a;永不停止的循环。 public class Forever…

最前沿・量子退火建模方法(1) : subQUBO讲解和python实现

前言 量子退火机在小规模问题上的效果得到了有效验证&#xff0c;但是由于物理量子比特的大规模制备以及噪声的影响&#xff0c;还没有办法再大规模的场景下应用。 这时候就需要我们思考&#xff0c;如何通过软件的方法怎么样把大的问题分解成小的问题&#xff0c;以便通过现在…

LRUCache原理及源码实现

目录 LRUCache简介&#xff1a; LRUCache的实现&#xff1a; LinkedHashMap方法实现&#xff1a; 自己实现链表&#xff1a; 前言&#xff1a; 有需要本文章源码的友友请前往&#xff1a;LRUCache源码 LRUCache简介&#xff1a; LRU是Least Recently Used的缩写&#xf…

Pixel-GS:用于3D高斯溅射的具有像素感知梯度的密度控制

Pixel-GS: Density Control with Pixel-aware Gradient for 3D Gaussian Splatting Pixel-GS&#xff1a;用于3D高斯溅射的具有像素感知梯度的密度控制 Zheng Zhang  Wenbo Hu†  Yixing Lao   老宜兴市郑张文博胡 † Tong He  Hengshuang Zhao† 赵同和恒双 †1122113311 …

1.open3d处理点云数据的常见方法

1. 点云的读取、可视化、保存 在这里是读取的点云的pcd文件&#xff0c;代码如下&#xff1a; import open3d as o3dif __name__ __main__:#1.点云读取point o3d.io.read_point_cloud("E:\daima\huawei\img\change2.pcd")print(">",point)#2.点云可视…

SpringMVC(一)【入门】

前言 学完了大数据基本组件&#xff0c;SpringMVC 也得了解了解&#xff0c;为的是之后 SpringBoot 能够快速掌握。SpringMVC 可能在大数据工作中用的不多&#xff0c;但是 SSM 毕竟是现在就业必知必会的东西了。SpringBoot 在数仓开发可能会经常用到&#xff0c;所以不废话学吧…

全网最好的JVM总结:有生命周期的JVM

1.编译 1.1 java中编译器有哪些&#xff1f; 前端编译器 javac后台即时编译器 JIT编译器静态提前编译器 &#xff08;一步到位&#xff0c;直接把java编译成二进制&#xff09; 2.2 编译过程是怎么样&#xff1f; 解析与填充符号表&#xff0c;生成语法树 &#xff08;编译…

java学习之路-继承

文章目录 前言 目录 1.1继承的概念 1.2继承有什么好处&#xff0c;为何要继承 1.3继承的语句 1.4父类成员的访问 1.4.1 子类中访问父类的成员变量 1.4.2 子类中访问父类的成员方法 1.5 super关键字 2.子类构造方法 2.1如何创建构造方法 2.2创建构造方法 3.super和this 【相同点…

Centos7 K8S 集群 - kubeadm搭建方式

机器准备 搭建环境是centos7, 四核心4G内存四台机器 一个master节点&#xff0c;一个etcd&#xff0c;两台node 机器名称IP 地址master192.168.1.127node1192.168.1.129node2192.168.1.130node3192.168.1.131 机器时间同步 各节点时间要求精确同步&#xff0c;可以直接联网…

web自动化测试系列-selenium xpath定位方法详解(六)

1.xpath介绍 XPath 是一门在 XML 文档中查找信息的语言。XPath 用于在 XML 文档中通过元素和属性进行导航。而html中也应用了这种语言 &#xff0c;所以 &#xff0c;我们定位html页面元素时也会用到xpath这种方法 。 2.xpath定位方式 xpath主要通过以下四种方法定位 &#…

【第二十九篇】BurpSuite杂项综合

文章目录 Intruder模块URL编码Grep检索提取logger日志模块Intruder模块URL编码 假设我们需要对GET请求包中的URL目录进行爆破FUZZ: example.com/xxxx(文件名)Intruder模块会自动对我们的文件名字典进行URL编码 例如payload为1.txt时,burp对其进行URL编码并连接到example.c…

VMware安装Red Hat7.9

1、下载Red Hat Enterprise Linux7.9版本 【百度网盘下载】 链接&#xff1a;https://pan.baidu.com/s/1567NfZRF48PBXfUqxumvDA 提取码&#xff1a;bm7u 2、在虚拟机中创建Red Hat7.9 【点击创建虚拟机】 【自定义高级】 【选择光盘映像安装】 全名自定义即可 【虚拟机命…

Windows环境下删除MySQL

文章目录 一、关闭MySQL服务1、winR打开运行&#xff0c;输入services.msc回车2、服务里找到MySQL并停止 二、卸载MySQL软件1、打开控制模板--卸载程序--卸载MySQL相关的所有组件 三、删除MySQL在物理硬盘上的所有文件1、删除MySQL的安装目录&#xff08;默认在C盘下的Program …

【截至2023年底】语言模型的发展

什么是大语言模型LLM&#xff1f;ChatGPT、LLAMA各自有什么优势&#xff1f; from&#xff1a; https://www.youtube.com/watch?vt6qBKPubEEo github&#xff1a; https://github.com/Mooler0410/LLMsPracticalGuide 来自这篇survey&#xff0c;但据说还在更新&#xff0c;到…

王道汽车4S企业管理系统 SQL注入漏洞复现

0x01 产品简介 王道汽车4S企业管理系统(以下简称“王道4S系统”)是一套专门为汽车销售和维修服务企业开发的管理软件。该系统是博士德软件公司集10余年汽车行业管理软件研发经验之大成,精心打造的最新一代汽车4S企业管理解决方案。 0x02 漏洞概述 王道汽车4S企业管理系统…

etcd相关知识整理归纳 —— 筑梦之路

什么是etcd? Etcd 是 CoreOS 团队于2013年6月发起的开源项目&#xff0c;它的目标是构建一个高可用的分布式键值(key-value)数据库。etcd内部采用raft协议作为一致性算法&#xff0c;Etcd基于 Go 语言实现。 名字由来&#xff0c;它源于两个方面&#xff0c;unix的“/etc”文件…

【ARM 裸机】汇编 led 驱动之编译程序

编译程序这一节分为四个步骤&#xff1a; 1、将 .s .c 文件变成 .o 文件&#xff0c;使用 arm-linux-gnueabihf-gcc&#xff1b; arm-linux-gnueabihf-gcc -g -c leds.s -o led.o上述命令就是将 leds.s 编译为 led.o&#xff0c;其中“ -g ”选项是产生调试信息&#xff0c;G…

lua学习笔记19(面相对象学习的一点总结)

print("*****************************面相对象总结*******************************") object{} --实例化方法 function object:new()local obj{}self.__indexselfsetmetatable(obj,self)return obj end-------------------------如何new一个对象 function object:…