ShuffleNetv2可以说是目前轻量级网络模型中的翘楚,将ShuffleNetv2于yolov5整合开发可以使得模型更加轻量化,在提升模型速度的同时保证有效的精度。
本文的主要工作就是将ShuffleNetv2整合进yolov5中来开发构建细胞检测模型,首先看下效果图:
 
   这里是基于yolov5s进行改进融合的,改进后的yaml文件如下所示:
# parameters
nc: 1
depth_multiple: 0.33
width_multiple: 0.50
#Anchors
anchors:
  - [10,13, 16,30, 33,23]  
  - [30,61, 62,45, 59,119]  
  - [116,90, 156,198, 373,326]  
#Backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, conv_bn_relu_maxpool, [32]],    
   [-1, 1, ShuffleBlock, [116, 2]], 
   [-1, 3, ShuffleBlock, [116, 1]], 
   [-1, 1, ShuffleBlock, [232, 2]], 
   [-1, 7, ShuffleBlock, [232, 1]], 
   [-1, 1, ShuffleBlock, [464, 2]], 
   [-1, 1, ShuffleBlock, [464, 1]], 
  ]
#Head
head:
  [[-1, 1, Conv, [96, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[ -1, 4 ], 1, Concat, [1]],  
   [-1, 1, DWConv, [96, 3, 1]],  
   [-1, 1, Conv, [96, 1, 1 ]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 2], 1, Concat, [1]],  
   [-1, 1, DWConv, [96, 3, 1]], 
   [-1, 1, DWConv, [96, 3, 2]],
   [[-1, 11], 1, ADD, [1]], 
   [-1, 1, DWConv, [96, 3, 1]], 
   [-1, 1, DWConv, [ 96, 3, 2]],
   [[-1, 7], 1, ADD, [1]],  
   [-1, 1, DWConv, [96, 3, 1]],
   [[14, 17, 20], 1, Detect, [nc, anchors]], 
  ]这里的改进主要体现在两部分结合ShuffleNet的网络思想来的,首先是BackBone部分,如下:
 
   直接使用了ShuffleBlock来替换原有的C3和Conv模块了。
之后是head部分,如下所示:
 
   这部分主要是深度可分离卷积的使用了,进一步降低参数量的高效tricks。
接下来看下数据集:
 
   VOC格式标注数据如下所示:
 
   实例标注内容如下:
<annotation>
    <folder>Hela</folder>
    <filename>images/0edad713-0236-48ce-ba10-f6a5cc8a5194.jpg</filename>
    <source>
        <database>The Hela Database</database>
        <annotation>Hela</annotation>
        <image>Hela</image>
    </source>
    <owner>
        <name>YSHC</name>
    </owner>    
    <size>
        <width>512</width>
        <height>512</height>
        <depth>3</depth>
    </size>
    <segmented>0</segmented>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>251</xmin>
            <ymin>0</ymin>
            <xmax>384</xmax>
            <ymax>76</ymax>
        </bndbox>
    </object>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>313</xmin>
            <ymin>67</ymin>
            <xmax>482</xmax>
            <ymax>159</ymax>
        </bndbox>
    </object>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>145</xmin>
            <ymin>98</ymin>
            <xmax>243</xmax>
            <ymax>242</ymax>
        </bndbox>
    </object>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>251</xmin>
            <ymin>103</ymin>
            <xmax>400</xmax>
            <ymax>226</ymax>
        </bndbox>
    </object>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>31</xmin>
            <ymin>157</ymin>
            <xmax>140</xmax>
            <ymax>281</ymax>
        </bndbox>
    </object>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>221</xmin>
            <ymin>218</ymin>
            <xmax>351</xmax>
            <ymax>327</ymax>
        </bndbox>
    </object>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>347</xmin>
            <ymin>254</ymin>
            <xmax>498</xmax>
            <ymax>360</ymax>
        </bndbox>
    </object>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>117</xmin>
            <ymin>261</ymin>
            <xmax>221</xmax>
            <ymax>360</ymax>
        </bndbox>
    </object>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>12</xmin>
            <ymin>282</ymin>
            <xmax>104</xmax>
            <ymax>390</ymax>
        </bndbox>
    </object>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>62</xmin>
            <ymin>354</ymin>
            <xmax>182</xmax>
            <ymax>464</ymax>
        </bndbox>
    </object>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>216</xmin>
            <ymin>357</ymin>
            <xmax>358</xmax>
            <ymax>444</ymax>
        </bndbox>
    </object>
    
    <object>        
        <name>cell</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>80</xmin>
            <ymin>437</ymin>
            <xmax>221</xmax>
            <ymax>512</ymax>
        </bndbox>
    </object>
    
</annotation>YOLO格式标注数据如下所示:
 
   样例标注数据如下所示:
0 0.541016 0.077148 0.238281 0.154297
0 0.949219 0.131836 0.101562 0.189453
0 0.617188 0.227539 0.257812 0.162109
0 0.339844 0.390625 0.316406 0.21875
0 0.630859 0.397461 0.277344 0.193359
0 0.634766 0.599609 0.210938 0.269531
0 0.829102 0.571289 0.248047 0.208984
0 0.34668 0.592773 0.341797 0.228516
0 0.175781 0.71582 0.214844 0.349609
0 0.37793 0.802734 0.205078 0.1875接下来就可以启动模型训练了,日志输出如下所示:
 
    
   接下来看下结果详情。
LABEL数据可视化:
 
   训练batch检测样例:
 
   F1值曲线和PR曲线 :
 
   最后基于专用的界面实现可视化推理应用。
 
   上传图像:
 
   检测推理计算:
 
    
   


















