菜鸟笔记-14Python绘图颜色使用

news2025/9/20 10:48:17

Python中绘图主要依赖于各种库,其中matplotlib是最常用且功能强大的一个。在matplotlib中,你可以使用各种颜色来表示不同的数据点、线条或填充区域。下面我将详细介绍如何在Python中使用matplotlib来设置绘图颜色,并给出具体的例子。

14.1颜色的表示方式

  1. 颜色名称:直接使用英文颜色名称,如redbluegreenyellow等。
  2. 十六进制颜色代码:以#开头,后面跟着6个十六进制数字,表示RGB颜色。例如,#FF0000表示红色。
  3. RGB元组:一个包含三个介于0到1之间浮点数的元组,分别代表红色、绿色和蓝色的强度。例如,(1.0, 0.0, 0.0)表示红色。
  4. RGBA元组:与RGB元组类似,但多了一个表示透明度的值(Alpha),范围也是0到1。例如,(1.0, 0.0, 0.0, 0.5)表示半透明的红色。

14.2举例说明 

14.2.1图像呈现

14.2.2代码

import numpy as np  # 导入numpy库,用于处理数组和数值计算
import matplotlib.pyplot as plt  # 导入matplotlib的绘图模块,用于可视化
from matplotlib import rcParams  # 从matplotlib中导入rcParams,它用于处理matplotlib的配置参数

# 定义一个字典config,其中包含字体、大小和其他相关的配置参数
config = {"font.family": 'serif', "font.size": 10.5, "mathtext.fontset": 'stix', "font.serif": ['SimSun']}
rcParams.update(config)  # 使用config字典中的配置参数更新rcParams
plt.rcParams['axes.unicode_minus'] = False  # 运行配置参数总的轴(axes)正常显示正负号(minus)


# 创建一些数据
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)

# 创建一个新的图形和坐标轴
fig, ax = plt.subplots()

# 使用颜色名称绘制第一条线
ax.plot(x, y1, color='red', label='sin(x)')

# 使用十六进制颜色代码绘制第二条线
ax.plot(x, y2, color='#00FF00', label='cos(x)')

# 使用RGB元组绘制第三条线(这里还是红色)
ax.plot(x, y1 + 0.5, color=(1.0, 0.0, 0.0), linestyle='--', label='sin(x) + 0.5')

# 使用RGBA元组绘制第四条线(半透明的蓝色)
ax.plot(x, y2 - 0.5, color=(0.0, 0.0, 1.0, 0.5), linestyle='-.', label='cos(x) - 0.5')

# 添加图例
ax.legend()

# 显示图形
plt.show()

14.3直接颜色

定义:直接颜色通常指的是通过颜色的名称来指定颜色,如“red”、“blue”、“green”等。

14.3.1绘图颜色罗列

以下是按照中文-英文的顺序罗列的所有英文颜色名称:

  1. 爱丽丝蓝 - aliceblue
  2. 古董白 - antiquewhite
  3. 水绿色 - aqua
  4. 绿松石色 - aquamarine
  5. 天蓝色 - azure
  6. 米色 - beige
  7. 桔黄色 - bisque
  8. 黑色 - black
  9. 漂白杏色 - blanchedalmond
  10. 蓝色 - blue
  11. 蓝紫色 - blueviolet
  12. 棕色 - brown
  13. 栗色 - burlywood
  14. 军蓝色 - cadetblue
  15. 黄绿色 - chartreuse
  16. 巧克力色 - chocolate
  17. 珊瑚色 - coral
  18. 矢车菊蓝 - cornflowerblue
  19. 米绸色 - cornsilk
  20. 深红色 - crimson
  21. 青色 - cyan
  22. 深蓝色 - darkblue
  23. 深青色 - darkcyan
  24. 深金黄色 - darkgoldenrod
  25. 深灰色 - darkgray
  26. 深绿色 - darkgreen
  27. 深灰色(同darkgray) - darkgrey
  28. 深卡其色 - darkkhaki
  29. 深洋红色 - darkmagenta
  30. 深橄榄绿 - darkolivegreen
  31. 深桔黄色 - darkorange
  32. 深兰花色 - darkorchid
  33. 深红色 - darkred
  34. 深肉色 - darksalmon
  35. 深海绿色 - darkseagreen
  36. 深石板蓝色 - darkslateblue
  37. 深石板灰色 - darkslategray
  38. 深石板灰色(同darkslategray) - darkslategrey
  39. 深青绿色 - darkturquoise
  40. 深紫色 - darkviolet
  41. 深粉红色 - deeppink
  42. 深天蓝色 - deepskyblue
  43. 暗灰色 - dimgray
  44. 暗灰色(同dimgray) - dimgrey
  45. 道奇蓝 - dodgerblue
  46. 砖红色 - firebrick
  47. 花白色 - floralwhite
  48. 森林绿 - forestgreen
  49. 紫红色 - fuchsia
  50. 淡黄色 - gainsboro
  51. 幽灵白 - ghostwhite
  52. 金色 - gold
  53. 金黄色 - goldenrod
  54. 灰色 - gray
  55. 灰色(同gray) - grey
  56. 绿色 - green
  57. 黄绿色 - greenyellow
  58. 蜜色 - honeydew
  59. 热粉红色 - hotpink
  60. 印度红 - indianred
  61. 靛青色 - indigo
  62. 象牙色 - ivory
  63. 卡其色 - khaki
  64. 淡紫色 - lavender
  65. 淡紫红 - lavenderblush
  66. 草绿色 - lawngreen
  67. 柠檬绸色 - lemonchiffon
  68. 淡蓝色 - lightblue
  69. 淡珊瑚色 - lightcoral
  70. 淡青色 - lightcyan
  71. 浅金黄色 - lightgoldenrodyellow
  72. 淡灰色 - lightgray
  73. 淡绿色 - lightgreen
  74. 淡灰色(同lightgray) - lightgrey
  75. 淡粉红色 - lightpink
  76. 淡肉色 - lightsalmon
  77. 淡海绿色 - lightseagreen
  78. 淡天蓝色 - lightskyblue
  79. 淡石板灰色 - lightslategray
  80. 淡石板灰色(同lightslategray) - lightslategrey
  81. 淡钢蓝色 - lightsteelblue
  82. 淡黄色 - lightyellow
  83. 酸橙色 - lime
  84. 酸橙绿色 - limegreen
  85. 亚麻色 - linen
  86. 洋红色 - magenta
  87. 栗色 - maroon
  88. 中等宝石绿 - mediumaquamarine
  89. 中等蓝色 - mediumblue
  90. 中兰花色 - mediumorchid
  91. 中紫色 - mediumpurple
  92. 中海绿色 - mediumseagreen
  93. 中暗蓝色 - mediumslateblue
  94. 春绿色 - mediumspringgreen
  95. 中青绿色 - mediumturquoise
  96. 中紫罗兰红色 - mediumvioletred
  97. 午夜蓝 - midnightblue
  98. 薄荷奶油色 - mintcream

14.3.2颜色对比 

14.3.2.1图像呈现

14.3.2.2代码
import numpy as np  # 导入numpy库,用于处理数组和数值计算
import matplotlib.pyplot as plt  # 导入matplotlib的绘图模块,用于可视化
from matplotlib import rcParams  # 从matplotlib中导入rcParams,它用于处理matplotlib的配置参数

# 定义一个字典config,其中包含字体、大小和其他相关的配置参数
config = {"font.family": 'serif', "font.size": 10.5, "mathtext.fontset": 'stix', "font.serif": ['SimSun']}
rcParams.update(config)  # 使用config字典中的配置参数更新rcParams
plt.rcParams['axes.unicode_minus'] = False  # 运行配置参数总的轴(axes)正常显示正负号(minus)
# 选择一部分颜色名称进行对比
colors = ['red', 'green', 'blue', 'yellow', 'cyan', 'magenta', 'black', 'white']

# 创建数据
N = len(colors)
ind = np.arange(N)  # 条形图的x位置
width = 0.35  # 条形图的宽度

# 创建条形图
fig, ax = plt.subplots()
rects1 = ax.bar(ind, [1] * N, width, color=colors)

# 添加一些文本,用于解释每个条形图
ax.set_ylabel('Value')
ax.set_title('色彩对比')
ax.set_xticks(ind)
ax.set_xticklabels(colors)

# 自动调整x轴标签的位置
ax.set_xticklabels(colors, rotation=45)

# 显示图形
plt.show()

14.4十六进制颜色代码

定义:十六进制颜色代码是一种使用十六进制数表示颜色的方式,通常以#RRGGBB(不带透明度)或#RRGGBBAA(带透明度)的形式出现,其中RR、GG、BB分别代表红色、绿色和蓝色的强度,AA代表透明度。

14.4.1常见颜色代码

  1. 白色 - #FFFFFF
  2. 黑色 - #000000
  3. 红色 - #FF0000
  4. 绿色 - #00FF00
  5. 蓝色 - #0000FF
  6. 黄色 - #FFFF00
  7. 紫色 - #800080
  8. 灰色 - #808080
  9. 银色 - #C0C0C0
  10. 粉红色 - #FFC0CB
  11. 橙色 - #FFA500
  12. 棕色 - #A52A2A
  13. 深蓝色 - #00008B
  14. 天蓝色 - #ADD8E6
  15. 青色 - #00FFFF
  16. 海蓝色 - #4682B4
  17. 橄榄色 - #808000
  18. 桃红色 - #FFB6C1
  19. 金色 - #FFD700
  20. 巧克力色 - #C15500

14.4.2 图像呈现

14.4.3绘图代码 

import numpy as np  # 导入numpy库,用于处理数组和数值计算
import matplotlib.pyplot as plt  # 导入matplotlib的绘图模块,用于可视化
from matplotlib import rcParams  # 从matplotlib中导入rcParams,它用于处理matplotlib的配置参数

# 定义一个字典config,其中包含字体、大小和其他相关的配置参数
config = {"font.family": 'serif', "font.size": 10.5, "mathtext.fontset": 'stix', "font.serif": ['SimSun']}
rcParams.update(config)  # 使用config字典中的配置参数更新rcParams
plt.rcParams['axes.unicode_minus'] = False  # 运行配置参数总的轴(axes)正常显示正负号(minus)
import matplotlib.pyplot as plt
import numpy as np

# 创建一些示例数据
x = np.linspace(0, 10, 100)
y = np.sin(x)

# 使用十六进制颜色代码绘制线
plt.plot(x, y, color='#FF0000')  # 红色线

# 使用另一个十六进制颜色代码绘制散点
plt.scatter(x[::10], y[::10], color='#00FF00')  # 绿色散点

# 设置图表标题和坐标轴标签
plt.title('使用十六进制颜色代码绘图示例')
plt.xlabel('X轴')
plt.ylabel('Y轴')

# 显示图表
plt.show()

使用十六进制颜色代码的好处是它们提供了一种直观且精确的方式来指定颜色,特别是当你需要使用特定的品牌颜色或设计颜色时。

14.5RGB元组

定义:RGB元组是一种使用三个整数(范围通常为0-255)分别表示红色、绿色和蓝色通道强度的颜色表示方式。这三个值可以任意组合,形成各种不同的颜色。通过调整RGB元组中的值,你可以得到几乎无限多种颜色。每个颜色都可以通过调整红、绿、蓝三种颜色的强度来精确控制。在某些绘图库(如Matplotlib)中,也可能使用0-1范围内的浮点数表示。

14.5.1常见颜色

  • 红色:(255, 0, 0)
  • 绿色:(0, 255, 0)
  • 蓝色:(0, 0, 255)
  • 黑色:(0, 0, 0)
  • 白色:(255, 255, 255)
  • 黄色:(255, 255, 0)
  • 青色:(0, 255, 255)
  • 紫色:(128, 0, 128)
  • 灰色(50%):(128, 128, 128)
  • 棕色:(165, 42, 42)
  • 粉红色:(255, 192, 203)
  • 橙色:(255, 165, 0)

14.5.2图像呈现

14.5.3绘图代码 

import numpy as np  # 导入numpy库,用于处理数组和数值计算
import matplotlib.pyplot as plt  # 导入matplotlib的绘图模块,用于可视化
from matplotlib import rcParams  # 从matplotlib中导入rcParams,它用于处理matplotlib的配置参数

# 定义一个字典config,其中包含字体、大小和其他相关的配置参数
config = {"font.family": 'serif', "font.size": 10.5, "mathtext.fontset": 'stix', "font.serif": ['SimSun']}
rcParams.update(config)  # 使用config字典中的配置参数更新rcParams
plt.rcParams['axes.unicode_minus'] = False  # 运行配置参数总的轴(axes)正常显示正负号(minus)


# 创建一些示例数据
x = np.linspace(0, 10, 100)
y = np.sin(x)

# 使用RGB元组绘制线(值范围必须在0到1之间)
plt.plot(x, y, color=(1, 0, 0))  # 红色线,RGB值转换为0-1范围

# 使用另一个RGB元组绘制散点(值范围必须在0到1之间)
plt.scatter(x[::10], y[::10], color=(0, 1, 0))  # 绿色散点,RGB值转换为0-1范围

# 设置图表标题和坐标轴标签
plt.title('使用RGB元组绘图示例')
plt.xlabel('X轴')
plt.ylabel('Y轴')

# 显示图表
plt.show()

14.6RGBA元组

定义:RGBA元组是RGB元组的扩展,增加了一个表示透明度的通道(A)。由四个整数值组成,分别代表红色、绿色、蓝色和透明度(Alpha)的强度。这三个颜色通道(RGB)的值范围通常是0到255,而透明度通道(A)的值范围通常是0(完全透明)到1(完全不透明)或者0到255。

14.6.1常见颜色

# 红色,完全不透明  
rgba_255_red = (255, 0, 0, 255)  
  
# 绿色,50%透明  
rgba_255_green_half_transparent = (0, 255, 0, 128)  
  
# 蓝色,完全透明  
rgba_255_blue_transparent = (0, 0, 255, 0)

14.6.2图像呈现

14.6.3绘图代码

import numpy as np  # 导入numpy库,用于处理数组和数值计算
import matplotlib.pyplot as plt  # 导入matplotlib的绘图模块,用于可视化
from matplotlib import rcParams  # 从matplotlib中导入rcParams,它用于处理matplotlib的配置参数

# 定义一个字典config,其中包含字体、大小和其他相关的配置参数
config = {"font.family": 'serif', "font.size": 10.5, "mathtext.fontset": 'stix', "font.serif": ['SimSun']}
rcParams.update(config)  # 使用config字典中的配置参数更新rcParams
plt.rcParams['axes.unicode_minus'] = False  # 运行配置参数总的轴(axes)正常显示正负号(minus)

# 创建一些示例数据
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)

# 定义两个带有透明度的RGBA元组
# 注意:Matplotlib中,RGBA元组的Alpha值应该是0到1之间
color1 = (0.1, 0.2, 0.5, 0.7)  # 蓝色调,70%不透明
color2 = (0.9, 0.5, 0.1, 0.3)  # 橙色调,30%不透明

# 绘制带有透明度的线
plt.plot(x, y1, color=color1, label='Sin(x) with alpha=0.7')
plt.plot(x, y2, color=color2, label='Cos(x) with alpha=0.3')

# 设置图例
plt.legend()

# 设置图表标题和坐标轴标签
plt.title('使用RGBA元组进行科研绘图示例')
plt.xlabel('X轴')
plt.ylabel('Y轴')

# 显示网格
plt.grid(True)

# 显示图表
plt.show()

14.7绘图对比

  1. 直接颜色
    • 优点:易于理解和使用,无需进行任何转换。
    • 缺点:颜色名称的集合有限,可能无法精确匹配所需的颜色。此外,不同的绘图库或软件可能对相同的颜色名称有不同的解释,导致颜色不一致。
    • 适用场景:在需要快速设置大致颜色且对颜色精度要求不高的情况下使用。
  2. 十六进制颜色代码
    • 优点:能够精确地表示颜色,且在不同平台和软件中的解释较为一致。此外,十六进制颜色代码在网页设计和图形编辑中广泛使用,便于与其他设计元素匹配。
    • 缺点:相对于RGB或RGBA元组,十六进制颜色代码可能需要一些额外的转换工作。
    • 适用场景:在需要精确匹配颜色且与其他设计元素协调时使用,尤其在网页或图形编辑领域。
  3. RGB元组
    • 优点:能够精确地表示颜色,且在数值计算和处理方面较为方便。此外,RGB元组在许多编程语言和图形库中都有很好的支持。
    • 缺点:与十六进制颜色代码相比,RGB元组可能不太直观,需要一定的转换工作。此外,在某些情况下,可能需要额外处理以匹配绘图库或软件的颜色范围要求。
    • 适用场景:在编程和数值计算中需要精确控制颜色时使用,尤其在需要与其他颜色空间(如HSV、CMYK等)进行转换时。
  4. RGBA元组
    • 优点:能够精确地表示颜色及其透明度,使得绘图更加灵活和多样。通过调整透明度,可以实现叠加、渐变等效果,增强图形的表现力。
    • 缺点:与RGB元组相比,RGBA元组需要额外的处理来管理透明度通道。此外,在某些不支持透明度的绘图库或软件中,可能需要额外的转换或调整。
    • 适用场景:在需要表示颜色及其透明度时使用,尤其在需要实现叠加、渐变或透明效果时。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1503925.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DFS回溯-经典全排列问题(力扣)

前言 对于全排列问题,常用的做法是设置一个vis数组来确定位置i上的数字是否被访问,因为是全排列问题,所以不同的顺序也是不一样的排列,因此每次都是从起点开始询问**(注意起点到底是0还是1)** 46全排列(最简单的模板) class So…

训练验证码之ddddocr一个图文视频教学

目录 一、推荐文章视频一、ddddocr环境配置二、字符集验证码训练三、ocr_api_server服务搭建 一、推荐文章视频 文章原文来自这里:训练验证码-4、ddddocr训练字符验证码 , 原文文章末尾有视频介绍更多内容见训练验证码合集 一、ddddocr环境配置 1.打开…

【C++专栏】C++入门 | 函数重载、引用、内联函数

博客主页:Duck Bro 博客主页系列专栏:C专栏关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ C入门 | 函数重载、引用、内联函数 文章编号:C入门 / 02 文…

Java:继承

文章目录 每日一言什么是继承?子类怎么访问父类的成员变量?不同名的怎么访问?同名的怎么访问? 子类怎么访问父类的成员方法?不同名的怎么访问?同名的怎么访问? 如果我就是想访问同名的父类的成员…

每日一题leetcode第2834:找出美丽数组的最小和

目录 一.题目描述 二.思路及优化 三.C代码 一.题目描述 二.思路及优化 首先我们看到这个题,就是根据给出的数组元素个数N,从[1,N]找出N个元素,使得N个元素的和最小,其中随便抽两个数出来,两个数之和不能为…

《2024国家自然科学基金青年基金》 相关申请注意事项解读

一 年龄计算 2004 对应 89 2005 对应 90 2006 对应 91 2007 对应 92 2008 对应 93 2009 对应 94 2010 对应 95 .。。 二 资助比例(2023) 2024年 23.13% 2023年 24% 三 2024年政策变动,只能申请3年的30万,不能像23年一样选择10-20的…

UE5.1_使用技巧(常更)

UE5.1_使用技巧(常更) 1. 清除所有断点 运行时忘记蓝图中的断点可能会出现运行错误的可能,务必运行是排除一切断点,逐个排查也是办法,但是在事件函数多的情况下会很复杂且慢节奏,学会一次性清除所有很有必…

【Python+Selenium学习系列5】Selenium特殊元素定位之-鼠标悬停操作

前言 Selenium模拟用户在浏览器中的操作,比如点击按钮。在某些场景下,我们需要模拟鼠标悬停的操作,来触发一些隐藏的元素。本文将介绍Python Selenium实现鼠标悬停操作。 鼠标悬停,即当光标与其名称表示的元素重叠时触发的事件&…

【js刷题:数据结构数组篇之二分查找】

二分查找 一、什么是二分查找法二、具体实现步骤1.确定确定target所在数组的**左右边界**左闭右闭左闭右开 2.取中间值左闭右闭左闭右开 3.中间元素目标值4.中间元素大于目标值5.中间元素小于目标值6.重复 三、使用条件四、js版本示例1.左闭右闭2.左闭右开 五、力扣刷题1.搜索插…

魔众智能AI系统v2.1.0版本支持主流大模型(讯飞星火、文心一言、通义千问、腾讯混元、Azure、MiniMax、Gemini)

支持主流大模型(讯飞星火、文心一言、通义千问、腾讯混元、Azure、MiniMax、Gemini) [新功能] 系统全局消息提示 UI 全新优化 [新功能] JS 库增加【ijs】类型字符串,支持默认可执行代码 [新功能] 分类快捷操作工具类 CategoryUtil [新功能…

手写简易操作系统(三)--加载Loader

前情提要 上一节我们讲了如何启动计算机,这一节我们讲如何加载内核,内核是存在于硬盘上的一段程序,要加载这段程序,那么必然需要从硬盘上读取数据,这里我们就需要使用 ATA PIO 模式 根据ATA规范,所有符合A…

基于java+springboot+vue实现的学生信息管理系统(文末源码+Lw+ppt)23-54

摘 要 人类现已进入21世纪,科技日新月异,经济、信息等方面都取得了长足的进步,特别是信息网络技术的飞速发展,对政治、经济、军事、文化等方面都产生了很大的影响。 利用计算机网络的便利,开发一套基于java的大学生…

「蓝桥·算法双周赛」第七场分级赛——小白入门赛

题目列表 说明 好久没打蓝桥杯的比赛&#xff0c;回来试试水&#xff0c;就开了第1、2、3一共三个题&#xff0c;第4题可惜了。1.thanks,mom【算法赛】 思路&#xff1a; 没什么好说的&#xff0c;但是当时比赛刚开始服务器有问题&#xff0c;基本提交的全WA了。#include <…

Learn OpenGL 04 纹理

纹理环绕方式 纹理坐标的范围通常是从(0, 0)到(1, 1)&#xff0c;那如果我们把纹理坐标设置在范围之外会发生什么&#xff1f;OpenGL默认的行为是重复这个纹理图像&#xff08;我们基本上忽略浮点纹理坐标的整数部分&#xff09;&#xff0c;但OpenGL提供了更多的选择&#xf…

java中的字符串比较(题目作示例)

错误的代码 import java.util.Scanner; public class one {public static void main(String[] args) {Scanner scnew Scanner(System.in);String b"47568";int i0;for ( i 0; i <3; i){String asc.next();if(ab){System.out.println("密码正确&#xff0c;登…

鸿蒙开发(二)-项目结构

鸿蒙开发(二)-项目结构 上篇文章我们讲了如何配置鸿蒙开发的基础环境&#xff0c;以及创建了第一个鸿蒙程序。 这篇我们讲述了鸿蒙应用的项目目录结构。 如图所示&#xff1a;我们切换项目project可以看到。 另一种则是Ohos模式: AppScope->app.json5 应用的全局配置 {&q…

300分钟吃透分布式缓存-23讲:Redis是如何淘汰key的?

淘汰原理 首先我们来学习 Redis 的淘汰原理。 系统线上运行中&#xff0c;内存总是昂贵且有限的&#xff0c;在数据总量远大于 Redis 可用的内存总量时&#xff0c;为了最大限度的提升访问性能&#xff0c;Redis 中只能存放最新最热的有效数据。 当 key 过期后&#xff0c;或…

【vue.js】文档解读【day 2】 | 响应式基础

如果阅读有疑问的话&#xff0c;欢迎评论或私信&#xff01;&#xff01; 本人会很热心的阐述自己的想法&#xff01;谢谢&#xff01;&#xff01;&#xff01; 文章目录 响应式基础声明响应式状态(属性)响应式代理 vs 原始值声明方法深层响应性DOM 更新时机有状态方法 响应式…

html--彩虹爱心

文章目录 js内容cssreset.min.cssstyle.css html内容 js内容 const colors ["#e03776","#8f3e98","#4687bf","#3bab6f","#f9c25e","#f47274"]; const SVG_NS http://www.w3.org/2000/svg; const SVG_XLINK &q…

VUE3 使用axios网络请求

1.新建工程 参考&#xff0c;VUE3 环境搭建&#xff1a;https://blog.csdn.net/LQ_001/article/details/136293795&#xff0c;运行命令 vue create vue-demo 2.引入axios 不管何种引用&#xff0c;都要在工程中安装 axios 包。安装命令&#xff1a;npm install --save axio…