数据结构从入门到精通——队列

news2025/6/19 14:41:10

队列

  • 前言
  • 一、队列
    • 1.1队列的概念及结构
    • 1.2队列的实现
    • 1.3队列的实现
    • 1.4扩展
  • 二、队列面试题
  • 三、队列的具体实现代码
    • Queue.h
    • Queue.c
    • test.c
    • 队列的初始化
    • 队列的销毁
    • 入队列
    • 出队列
    • 返回队头元素
    • 返回队尾元素
    • 检测队列是否为空
    • 检测元素个数


前言

队列是一种特殊的线性数据结构,遵循先入先出(FIFO)的原则。它只允许在队列的末尾添加元素(称为入队操作),并从队列的开头移除元素(称为出队操作)。队列在多种应用中发挥着重要作用,如计算机系统的任务调度、打印机作业管理以及多线程编程中的线程同步等。


一、队列

1.1队列的概念及结构

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out)

入队列:进行插入操作的一端称为队尾

出队列:进行删除操作的一端称为队头
在这里插入图片描述

1.2队列的实现

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数组头上出数据,效率会比较低。
在这里插入图片描述

1.3队列的实现

// 链式结构:表示队列 
typedef struct QListNode 
{ 
 struct QListNode* _pNext; 
 QDataType _data; 
}QNode; 
 
// 队列的结构 
typedef struct Queue 
{ 
 QNode* _front; 
 QNode* _rear; 
}Queue; 
 
// 初始化队列 
void QueueInit(Queue* q); 
// 队尾入队列 
void QueuePush(Queue* q, QDataType data); 
// 队头出队列 
void QueuePop(Queue* q); 
// 获取队列头部元素 
QDataType QueueFront(Queue* q); 
// 获取队列队尾元素 
QDataType QueueBack(Queue* q); 
// 获取队列中有效元素个数 
int QueueSize(Queue* q); 
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q); 
// 销毁队列 
void QueueDestroy(Queue* q);

1.4扩展

另外扩展了解一下,实际中我们有时还会使用一种队列叫循环队列。如操作系统课程讲解生产者消费者模型
时可以就会使用循环队列。环形队列可以使用数组实现,也可以使用循环链表实现。

在这里插入图片描述
在这里插入图片描述

二、队列面试题

  1. 用队列实现栈

  2. 用栈实现队列

  3. 设计循环队列

  4. 循环队列的存储空间为 Q(1:100) ,初始状态为 front=rear=100 。经过一系列正常的入队与退队操作后,front=rear=99 ,则循环队列中的元素个数为( )
    A 、1
    B 、2
    C 、99
    D、 0或者100

  5. 以下( )不是队列的基本运算?
    A 、从队尾插入一个新元素
    B、 从队列中删除第i个元素
    C、 判断一个队列是否为空
    D、 读取队头元素的值

  6. 现有一循环队列,其队头指针为front,队尾指针为rear;循环队列长度为N。其队内有效长度为?(假设
    队头不存放数据)
    A 、(rear - front + N) % N + 1
    B 、(rear - front + N) % N
    C 、(rear - front) % (N + 1)
    D 、(rear - front + N) % (N - 1)

答案:DBB

三、队列的具体实现代码

Queue.h

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>

typedef int QDatatype;
typedef struct QueueNode
{
	QDatatype val;
	struct QueueNode* next;
}QNode;

typedef struct Queue
{
	QNode* phead;
	QNode* ptail;
	int size;
}Queue;
//队列的初始化
void QueueInit(Queue* pq);
//队列的销毁
void QueueDestroy(Queue* pq);

//入队列
void QueuePush(Queue* pq, QDatatype x);
//出队列
void QueuePop(Queue* pq);

//队头元素
QDatatype QueueFront(Queue* pq);
//队尾元素
QDatatype QueueBack(Queue* pq);

//检测是否为空
bool QueueEmpty(Queue* pq);

//检测元素个数
int QueueSize(Queue* pq);

Queue.c

#include "Queue.h"
void QueueInit(Queue* pq)
{
	assert(pq);
	pq->phead = NULL;
	pq->ptail = NULL;
	pq->size = 0;
}
void QueueDestroy(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->phead;
	while (cur)
	{
		QNode* next = cur->next;
		free(cur);
		cur = next;
	}
	pq->phead = NULL;
	pq->ptail = NULL;
	pq->size = 0;
}
void QueuePush(Queue* pq, QDatatype x)
{
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{
		perror("newnode malloc :");
		return;
	}
	newnode->val = x;
	newnode->next = NULL;
	if (pq->ptail)
	{
		pq->ptail->next = newnode;
		pq->ptail = newnode;
	}
	else
	{
		pq->phead = pq->ptail = newnode;
	}
	pq->size++;
}
bool QueueEmpty(Queue* pq)
{
	assert(pq);
	return pq->size == 0;
}
void QueuePop(Queue* pq)
{
	assert(pq);
	//assert(!QueueEmpty(pq));
	assert(pq->phead != NULL);
	if (pq->phead->next == NULL)
	{
		free(pq->phead);
		pq->phead = pq->ptail = NULL;
	}
	else
	{
		QNode* next = pq->phead->next;
		free(pq->phead);
		pq->phead = next;
	}
	pq->size--;
}
QDatatype QueueFront(Queue* pq)
{
	assert(pq);
	assert(pq->phead != NULL);
	return pq->phead->val;
}
QDatatype QueueBack(Queue* pq)
{
	assert(pq);
	assert(pq->ptail != NULL);
	return pq->ptail->val;
}
int QueueSize(Queue* pq)
{
	assert(pq);
	return pq->size;
}

test.c

#include"Queue.h"

int main()
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, 1);
	QueuePush(&q, 2);

	printf("%d ", QueueFront(&q));
	QueuePop(&q);

	QueuePush(&q, 3);
	QueuePush(&q, 4);

	while (!QueueEmpty(&q))
	{
		printf("%d ", QueueFront(&q));
		QueuePop(&q);
	}

	QueueDestroy(&q);

	return 0;
}

队列的初始化

//队列的初始化
void QueueInit(Queue* pq);
void QueueInit(Queue* pq)
{
	assert(pq);
	pq->phead = NULL;
	pq->ptail = NULL;
	pq->size = 0;
}

队列的初始化是数据结构学习中不可或缺的一步,它标志着队列这一特定数据存储形式的诞生。队列,又称先进先出(FIFO)的数据结构,允许我们在一端(通常是队尾)添加元素,而在另一端(通常是队头)移除元素。这种特性使得队列在多种应用场景中发挥着重要作用,如操作系统中的任务调度、网络中的缓冲管理等。

在初始化队列时,我们首先需要分配一定的存储空间来存放队列元素。这个存储空间可以是数组、链表或其他适合的数据结构。初始化过程中,我们还需设置两个指针,分别指向队头和队尾,以便进行元素的添加和移除操作。

完成初始化后,队列就处于空状态,即没有元素可供处理。此时,任何尝试从队列中移除元素的操作都会失败,因为队列是空的。然而,可以向队列中添加元素,这些元素将按照添加的顺序依次排列。

随着元素的不断加入,队尾指针会向后移动,指向队列中最后一个元素。当需要从队列中移除元素时,队头指针会向前移动,指向下一个待处理的元素。这种指针的移动保证了队列的先进先出特性,即最早加入队列的元素将最先被移除。

除了基本的添加和移除操作外,队列还支持其他一些有用的操作,如检查队列是否为空、判断队列是否已满等。这些操作使得队列在实际应用中更加灵活和高效。

总之,队列的初始化是队列生命周期的开始,它为队列的后续操作提供了基础。通过对队列的合理初始化和管理,我们可以有效地处理各种需要先进先出处理顺序的场景,提高程序的效率和稳定性。

队列的销毁

//队列的销毁
void QueueDestroy(Queue* pq);
void QueueDestroy(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->phead;
	while (cur)
	{
		QNode* next = cur->next;
		free(cur);
		cur = next;
	}
	pq->phead = NULL;
	pq->ptail = NULL;
	pq->size = 0;
}

队列的销毁涉及清除所有队列元素并释放队列占用的内存空间,确保资源得到正确回收。这通常涉及遍历队列,逐个删除元素,并解除队列与其他数据结构或资源的关联。销毁队列后,其不再可用,需重新创建才能使用。

入队列

//入队列
void QueuePush(Queue* pq, QDatatype x);
void QueuePush(Queue* pq, QDatatype x)
{
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{
		perror("newnode malloc :");
		return;
	}
	newnode->val = x;
	newnode->next = NULL;
	if (pq->ptail)
	{
		pq->ptail->next = newnode;
		pq->ptail = newnode;
	}
	else
	{
		pq->phead = pq->ptail = newnode;
	}
	pq->size++;
}

入队列(Enqueue)是队列操作的一种,指的是将一个元素添加到队列的尾部。在队列这种先进先出(FIFO)的数据结构中,新添加的元素将排在所有已有元素的后面,等待被处理或移除。入队列操作不会改变队列中已有元素的顺序,保证了队列的先进先出特性。在实际应用中,入队列常用于实现缓冲、任务调度、消息传递等场景。

出队列

//出队列
void QueuePop(Queue* pq);
void QueuePop(Queue* pq)
{
	assert(pq);
	//assert(!QueueEmpty(pq));
	assert(pq->phead != NULL);
	if (pq->phead->next == NULL)
	{
		free(pq->phead);
		pq->phead = pq->ptail = NULL;
	}
	else
	{
		QNode* next = pq->phead->next;
		free(pq->phead);
		pq->phead = next;
	}
	pq->size--;
}

出队列是指从队列中移除并返回队列头部的元素,通常用于实现先进先出(FIFO)的数据结构。在出队列操作中,队列头部元素被移除并返回,队列中的其他元素则向前移动一位。出队列操作的时间复杂度通常为O(1),因为它只涉及到对队列头部元素的移除和返回,不需要遍历整个队列。在实际应用中,出队列操作常用于缓存管理、任务调度、网络流量控制等场景。

返回队头元素

//队头元素
QDatatype QueueFront(Queue* pq);
QDatatype QueueFront(Queue* pq)
{
	assert(pq);
	assert(pq->phead != NULL);
	return pq->phead->val;
}

队列是一种特殊的线性表,只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作。队列具有先进先出(FIFO)的特性。

"返回队头元素"是对队列进行的一种操作,即获取队列前端(队头)的元素,但并不从队列中删除该元素。这通常用于查看队列中的第一个元素,但不改变队列的状态。

返回队尾元素

//队尾元素
QDatatype QueueBack(Queue* pq);
QDatatype QueueBack(Queue* pq)
{
	assert(pq);
	assert(pq->ptail != NULL);
	return pq->ptail->val;
}

检测队列是否为空

//检测是否为空
bool QueueEmpty(Queue* pq);
bool QueueEmpty(Queue* pq)
{
	assert(pq);
	return pq->size == 0;
}

检测队列是否为空,可以通过检查队列的头部和尾部指针或索引来实现。如果头部和尾部指针或索引相同,说明队列为空;否则,队列不为空。此外,也可以使用队列提供的相关函数或方法,如isEmpty()等,来检测队列是否为空。在实际应用中,检测队列是否为空是常见的操作,常用于控制程序的流程。

在C语言中,没有相关的库函数检验是否为空,在c++中会有相关的数据结构的库

检测元素个数

//检测元素个数
int QueueSize(Queue* pq);
int QueueSize(Queue* pq)
{
	assert(pq);
	return pq->size;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1503504.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

141 Linux 系统编程18 ,线程,线程实现原理,ps –Lf 进程 查看

一 线程概念 什么是线程 LWP&#xff1a;light weight process 轻量级的进程&#xff0c;本质仍是进程(在Linux环境下) 进程&#xff1a;独立地址空间&#xff0c;拥有PCB 线程&#xff1a;有独立的PCB&#xff0c;但没有独立的地址空间(共享) 区别&#xff1a;在于是否共…

1、Ajax、get、post、ajax,随机颜色

一、Ajax初始 1、什么是Ajax&#xff1f; 异步的JavaScript和xml 2、xml是什么&#xff1f; 一种标记语言&#xff0c;传输和存储数据----------现在用JSON传输数据 3、Ajax的作用 局部加载 可以使网页异步更新 4、Ajax的原理或者步骤(6步) 创建Ajax对象 if (window.X…

【BUG】删除git本地仓库/远程仓库历史版本中的大文件以减少仓库大小

目录 前言排查过程解决过程通过如下命令查找历史大文件删除大文件&#xff0c;重构历史版本提交添加.ignore文件 总结 前言 某天像往常一样提交代码到gitee仓库&#xff0c;出现代码提交卡住不到的情况 2. 我百思不得姐&#xff0c;坚信bug会自己修复自己的原则等待了5分钟&am…

Python 一步一步教你用pyglet仿制鸿蒙系统里的时钟

目录 鸿蒙时钟 1. 绘制圆盘 2. 创建表类 3. 绘制刻度 4. 刻度数值 5. 添加指针 6. 转动指针 7. 联动时间 8. 时钟走动 鸿蒙时钟 本篇将用python pyglet库复刻华为手机鸿蒙系统闹钟程序的时钟&#xff0c;先在上图中抓取出时分秒针及刻度、表盘的颜色RGB值&#xff1a…

分布式解决方案

目录 1. 分布式ID1-1. 传统方案1-2. 分布式ID特点1-3. 实现方案1-4. 开源组件 1. 分布式ID 1-1. 传统方案 时间戳UUID 1-2. 分布式ID特点 全局唯一高并发高可用 1-3. 实现方案 方案总结&#xff1a; 号段模式 有两台服务器&#xff0c;给第一台服务器分配0-100&#xff0…

考虑局部遮阴的光伏PSO-MPPT控制MATLAB仿真

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 简介 光伏电池阵列的输出特性曲线不是线性变化的。当光伏电池遮荫时&#xff0c;产生的功 率会不断变化&#xff0c;致使光伏电池阵列的输出功率不断变化&#xff0c;其输出特性曲线呈现多峰值的现象。 多峰…

外包干了30天,技术明显退步。。

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 这次来聊一个大家可能也比较关心的问题&#xff0c;那就是就业城市选择的问题。而谈到这个问题&a…

简单BFF架构设计

又到周五了有了一个小时的闲暇时间简单写点东西&#xff0c;介绍一个简单的BFF的架构。BFF:Backends For Frontends,其实现在是个比较常见的前端架构设计的方案&#xff0c;其最大的优势便在于前端可以高度自由的在Node层做一些server端才可以做的东西&#xff0c;比如SSR、登录…

Day24:安全开发-PHP应用文件管理模块显示上传黑白名单类型过滤访问控制

目录 文件管理模块-上传-过滤机制 文件管理模块-显示-过滤机制 思维导图 PHP知识点 功能&#xff1a;新闻列表&#xff0c;会员中心&#xff0c;资源下载&#xff0c;留言版&#xff0c;后台模块&#xff0c;模版引用&#xff0c;框架开发等 技术&#xff1a;输入输出&#…

示波器探头的使用

无源探头(Tektronix P2220) 阻抗&#xff1a;1Mhz 衰减&#xff1a;10:1/1:1(与探头上的档位X10/X1相关&#xff0c;如果探头没有档位默认为10:1) 探头型号&#xff1a;电压 高压差分探头&#xff08;Tektronix P5200A) 阻抗&#xff1a;1Mhz 衰减&#xff1a;50:1/500:1(…

深入理解python之self

首先明确的是self只有在类的方法中才会有&#xff0c;独立的函数或方法是不必带有self的。self在定义类的方法时是必须有的&#xff0c;虽然在调用时不必传入相应的参数。 self名称不是必须的&#xff0c;在python中self不是关键词&#xff0c;你可以定义成a或b或其它名字都可…

Qt 定时器事件

文章目录 1 定时器事件1.1 界面布局1.2 关联信号槽1.3 重写timerEvent1.4 实现槽函数 启动定时器 2 定时器类 项目完整的源代码 QT中使用定时器&#xff0c;有两种方式&#xff1a; 定时器类&#xff1a;QTimer定时器事件&#xff1a;QEvent::Timer&#xff0c;对应的子类是QTi…

Vue.js+SpringBoot开发大学计算机课程管理平台

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 实验课程档案模块2.2 实验资源模块2.3 学生实验模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 实验课程档案表3.2.2 实验资源表3.2.3 学生实验表 四、系统展示五、核心代码5.1 一键生成实验5.2 提交实验5.3 批阅实…

Clock Verification IP

Clock Verification IP IP 参数及接口 IP 例化界面 相关函数 start_clock //产生时钟 <hierarchy_path>.IF.start_clockstop_clock //停止时钟 <hierarchy_path>.IF.stop_clockset_initial_value //设置时钟初始值为 0 <hierarchy_path>IF.set_initia…

Solidity攻击合约:“被偷走的资金”

在以太坊智能合约开发中&#xff0c;Solidity是最常用的编程语言。然而&#xff0c;由于代码编写不当或缺乏安全意识&#xff0c;合约可能面临各种攻击。本文将通过一个简单的Solidity合约示例&#xff0c;展示一个潜在的攻击合约&#xff0c;并分析其相对于原本合约的危害以及…

TS项目实战三:Express实现登录注册功能后端

使用express实现用户登录注册功能&#xff0c;使用ts进行代码开发&#xff0c;使用mysql作为数据库&#xff0c;实现用户登录、登录状态检测、验证码获取接口及用户注册相关接口功能的实现。 源码下载&#xff1a;[点击下载] (https://download.csdn.net/download/m0_37631110/…

设计模式-行为型模式-观察者模式

观察者模式定义了一种一对多的依赖关系&#xff0c;让多个观察者对象同时监听某一个主题对象。这个主题对象在状态发生变化时&#xff0c;会通知所有观察者对象&#xff0c;使它们能够自动更新自己。[DP] //首先是Observer接口&#xff0c;定义了观察者需要实现的更新方法&…

【Claude 3】一文谈谈Anthropic(Claude) 亚马逊云科技(Bedrock)的因缘际会

文章目录 前言1. Anthropic的诞生2. Anthropic的“代表作”——Claude 3的“三驾马车”3. 亚马逊云科技介绍4. 强大的全托管服务平台——Amazon Bedrock5. 亚马逊云科技(AWS)和Anthropic的联系6. Claude 3模型与Bedrock托管平台的关系7. Clude 3限时体验入口分享【⚠️截止3月1…

[贰],万能开篇HelloWorld

1&#xff0c;新建项目 File/New/Project Android/Android Application Project 输入程序名字HelloWorld Next Next 选择Blank Activity 修改为HelloWorldActivity 2&#xff0c;异常点 No resource found that matches the given name Theme.AppCompat.Light import andro…

c++中string的使用!!!(适合初学者 浅显易懂)

我们先初步的认识一下string,string底层其实是一个模版类 typedef basic_string<char> string; 我们先大致的把string的成员函数列举出来 class string { private: char * str; size_t size; size_t capacity; }; 1.string的六大默认函数 1.1 构造函数、拷贝构造 注&am…