Python算法题集_实现 Trie [前缀树]

news2025/5/21 0:45:59

 Python算法题集_实现 Trie [前缀树]

  • 题208:实现 Trie (前缀树)
  • 1. 示例说明
  • 2. 题目解析
    • - 题意分解
    • - 优化思路
    • - 测量工具
  • 3. 代码展开
    • 1) 标准求解【定义数据类+默认字典】
    • 2) 改进版一【初始化字典+无额外类】
    • 3) 改进版二【字典保存结尾信息+无额外类】
  • 4. 最优算法
  • 5. 相关资源

本文为Python算法题集之一的代码示例

题208:实现 Trie (前缀树)

1. 示例说明

  • Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。

    请你实现 Trie 类:

    • Trie() 初始化前缀树对象。
    • void insert(String word) 向前缀树中插入字符串 word
    • boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false
    • boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false

    示例:

    输入
    ["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
    [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
    输出
    [null, null, true, false, true, null, true]
    
    解释
    Trie trie = new Trie();
    trie.insert("apple");
    trie.search("apple");   // 返回 True
    trie.search("app");     // 返回 False
    trie.startsWith("app"); // 返回 True
    trie.insert("app");
    trie.search("app");     // 返回 True
    

    提示:

    • 1 <= word.length, prefix.length <= 2000
    • wordprefix 仅由小写英文字母组成
    • insertsearchstartsWith 调用次数 总计 不超过 3 * 104

2. 题目解析

- 题意分解

  1. 本题是为自动补完、拼写检查等创造一个高效率的检索类
  2. 基本的设计思路迭代单词,每层用字典保存,同时还需要保存单词结尾信息【search检测结尾、startWith不检测】

- 优化思路

  1. 通常优化:减少循环层次

  2. 通常优化:增加分支,减少计算集

  3. 通常优化:采用内置算法来提升计算速度

  4. 分析题目特点,分析最优解

    1. 可以尝试使用默认字典defaultdict

    2. 本题都是小写字母,因此26个元素的字典就可以保存一个层级

    3. 所有单词字符都是ASCII码,Ord值都在0-127,因此128个元素的字典可以正常使用【超时测试用例,需要128一层】

    4. 可以考虑将单词结尾信息保存在字典中,用一个单词中不会出现的字符即可,比如’#’


- 测量工具

  • 本地化测试说明:LeetCode网站测试运行时数据波动很大【可把页面视为功能测试】,因此需要本地化测试解决数据波动问题
  • CheckFuncPerf(本地化函数用时和内存占用测试模块)已上传到CSDN,地址:Python算法题集_检测函数用时和内存占用的模块
  • 本题本地化超时测试用例自己生成,详见章节【最优算法】,需要安装和部署**NLTK**

3. 代码展开

1) 标准求解【定义数据类+默认字典】

使用默认字典,定位专门的数据类,使用类属性保存单词结尾信息

页面功能测试,马马虎虎,超过33%在这里插入图片描述

import CheckFuncPerf as cfp

class prenode:
 def __init__(self):
     self.chars = defaultdict(int)

class Trie_base:
 def __init__(self):
     self.node = prenode()
     self.bEnd = False

 def searchPrefix(self, prefix):
     tmpNode = self
     for achar in prefix:
         ichar = ord(achar) - ord("a")
         if tmpNode.node.chars[ichar] == 0:
             return None
         tmpNode = tmpNode.node.chars[ichar]
     return tmpNode

 def insert(self, word):
     tmpNode = self
     for achar in word:
         ichar = ord(achar) - ord("a")
         if tmpNode.node.chars[ichar] == 0:
             tmpNode.node.chars[ichar] = Trie_base()
         tmpNode = tmpNode.node.chars[ichar]
     tmpNode.bEnd = True

 def search(self, word):
     node = self.searchPrefix(word)
     return node is not None and node.bEnd

 def startsWith(self, prefix):
     return self.searchPrefix(prefix) is not None

tmpTrie = Trie_base()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))

# 运行结果
函数 testTrie 的运行时间为 7127.62 ms;内存使用量为 373008.00 KB 执行结果 = 99

2) 改进版一【初始化字典+无额外类】

将字典数据和单词结尾信息都保存在节点类中,创建类同时初始化字典的128个元素【按题意只需26,本类已经按超时测试改写】

页面功能测试,马马虎虎,超过65%在这里插入图片描述

import CheckFuncPerf as cfp

class Trie_ext1:
 def __init__(self):
     self.data = [None] * 128
     self.bEnd = False

 def searchPrefix(self, prefix):
     tmpnode = self
     for achar in prefix:
         ichar = ord(achar)
         if not tmpnode.data[ichar]:
             return None
         tmpnode = tmpnode.data[ichar]
     return tmpnode

 def insert(self, word):
     tmpnode = self
     for achar in word:
         ichar = ord(achar)
         if not tmpnode.data[ichar]:
             tmpnode.data[ichar] = Trie_ext1()
         tmpnode = tmpnode.data[ichar]
     tmpnode.bEnd = True

 def search(self, word):
     tmpnode = self.searchPrefix(word)
     return tmpnode is not None and tmpnode.bEnd

 def startsWith(self, prefix):
     return self.searchPrefix(prefix) is not None

tmpTrie = Trie_ext1()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))

# 运行结果
函数 testTrie 的运行时间为 5857.32 ms;内存使用量为 793700.00 KB 执行结果 = 99

3) 改进版二【字典保存结尾信息+无额外类】

在字典中保存单词结尾信息,将字典数据保存在节点类中,创建类时不初始化字典

页面功能测试,性能卓越,超越96%在这里插入图片描述

import CheckFuncPerf as cfp

class Trie_ext2:
 def __init__(self):
     self.tree = {}

 def insert(self, word):
     tree = self.tree
     for achar in word:
         if achar not in tree:
             tree[achar] = {}
         tree = tree[achar]
     tree["#"] = "#"

 def search(self, word):
     tree = self.tree
     for achar in word:
         if achar not in tree:
             return False
         tree = tree[achar]
     return "#" in tree

 def startsWith(self, prefix):
     tree = self.tree
     for achar in prefix:
         if achar not in tree:
             return False
         tree = tree[achar]
     return True

tmpTrie = Trie_ext2()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))

# 运行结果
函数 testTrie 的运行时间为 1670.38 ms;内存使用量为 146692.00 KB 执行结果 = 99

4. 最优算法

根据本地日志分析,最优算法为第3种方式【字典保存结尾信息+无额外类】Trie_ext2

本题大概有以下结论:

  1. 独立的变量,如果能保存在字典结构里,减少独立的变量数,可以提升性能
  2. 数据集的默认初始化可能会扩大内存使用,同时数据量过大、内存过大也拖累性能
import random
from nltk.corpus import words
word_list = list(words.words())
def testTrie(aTrie, actions):
    for act in actions:
        if act[0]==1:   # insert
            aTrie.insert(act[1])
        elif act[0]==2: # search
            aTrie.search(act[1])
        elif act[0]==3: # startsWith
            aTrie.startsWith(act[1])
    return 99
import random
actions = []
iLen = 1000000
for iIdx in range(iLen):
    actions.append([random.randint(1, 3), random.choice(word_list)])
tmpTrie = Trie_base()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))
tmpTrie = Trie_ext1()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))
tmpTrie = Trie_ext2()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))

# 算法本地速度实测比较
函数 testTrie 的运行时间为 7127.62 ms;内存使用量为 373008.00 KB 执行结果 = 99
函数 testTrie 的运行时间为 5857.32 ms;内存使用量为 793700.00 KB 执行结果 = 99
函数 testTrie 的运行时间为 1670.38 ms;内存使用量为 146692.00 KB 执行结果 = 99

5. 相关资源

本文代码已上传到CSDN,地址:**Python算法题源代码_LeetCode(力扣)_**实现Trie(前缀树)

一日练,一日功,一日不练十日空

may the odds be ever in your favor ~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1469619.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实战一个 Jenkins 构建 CI/CD流水线 的简单配置过程哈

引言&#xff1a;上一期我们讲述了gitlabCI/CD工具的介绍&#xff0c;工具之争&#xff0c;本期我们介绍Jenkins CI/CD 目录 一、Jenkins介绍 1、Jenkins概念 2、Jenkins目的 3、特性 4、产品发布流程 二、安装Jenkins 1、安装JDK 2、安装Jenkins 1、上传压缩包 2、…

Python入门必学:单引号、双引号与三引号的差异与应用

Python入门必学&#xff1a;单引号、双引号与三引号的差异与应用 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程 &#x1f448; 希望得…

神经网络系列---激活函数

文章目录 激活函数Sigmoid 激活函数Tanh激活函数ReLU激活函数Leaky ReLU激活函数Parametric ReLU激活函数 &#xff08;自适应Leaky ReLU激活函数&#xff09;ELU激活函数SeLU激活函数Softmax 激活函数Swish 激活函数Maxout激活函数Softplus激活函数 激活函数 一般来说&#xf…

Tomcat线程池原理(上篇:初始化原理)

文章目录 前言正文一、从启动脚本开始分析二、ProtocolHandler 的启动原理三、AbstractEndPoint 的启动原理四、创建默认线程池五、参数配置原理5.1 常规的参数配置5.2 自定义线程池5.3 测试自定义线程 前言 在Java Web的开发过程中&#xff0c;Tomcat常用的web容器。SpringBo…

SpringBoot -【BeanPostProcessor】基础使用及应用场景

BeanPostProcessor应用与优化 1. 引言 在现代软件开发中&#xff0c;企业开发面临着越来越复杂的系统架构和业务需求。随着项目规模的扩大和技术栈的增多&#xff0c;需要更高效的工具来应对这些挑战&#xff0c;并确保代码的可维护性和扩展性。 在这样的背景下&#xff0c;Be…

Linux之项目部署与发布

目录 一、Nginx配置安装&#xff08;自启动&#xff09; 1.一键安装4个依赖 2. 下载并解压安装包 3. 安装Nginx 4. 启动 nginx 服务 5. 对外开放端口 6. 配置开机自启动 7.修改/etc/rc.d/rc.local的权限 二、后端部署tomcat负载均衡 1. 准备2个tomcat 2. 修改端口 3…

随机分布模型

目录 前言 一、离散型随机变量 1.1 0-1分布 1.2 二项分布 1.3 帕斯卡分布 1.4 几何分布 1.5 超几何分布 1.6 泊松分布 二、连续型随机变量 2.1 均匀分布 2.2 指数分布 2.3 高斯分布/正态分布 2.4 分布&#xff08;抽样分布&#xff09; 2.5 t分布&#xff08;抽样…

Vue局部注册组件实现组件化登录注册

Vue局部注册组件实现组件化登录注册 一、效果二、代码1、index.js2、App.vue3、首页4、登录&#xff08;注册同理&#xff09; 一、效果 注意我这里使用了element组件 二、代码 1、index.js import Vue from vue import VueRouter from vue-router import Login from ../vie…

迷你世界之建筑生成球体

local x0,y0,z00,30,0--起点坐标 local dx,dy,dz60,60,60--外切长方体横纵竖长度 local count,all0,dx*dy*dz--计数&#xff0c;总数 local m,k10000,0--单次生成方块数&#xff0c;无用循环值 local x,y,z0,0,0--当前坐标 local demath.random(2,19)/2 local id600--方块…

【监督学习之逻辑回归】

曾梦想执剑走天涯&#xff0c;我是程序猿【AK】 目录 简述概要知识图谱1.什么是逻辑回归&#xff1f;2.逻辑回归有哪些应用&#xff1f;3.回归分析如何工作&#xff1f;4.逻辑回归模型如何工作&#xff1f;5.逻辑回归分析有哪些类型&#xff1f;6.逻辑回归与其他机器学习技术相…

APP攻防-实战拿下某seseAPPSpringboot未授权HeapDump提取OSS利用

知识点 1、APK-抓包 2、资产信息收集 3、SpringBoot-漏洞利用 4、自动化工具 5、HeapDump-分析提取 6、AccessKEY-利用后续 演示案例&#xff1a; 1、APK-抓包 2、资产信息收集 3、SpringBoot-漏洞利用 SpringBoot漏洞利用&#xff1a; https://github.com/LandGrey/Spring…

K8S—集群调度

目录 前言 一 List-Watch 1.1 list-watch概述 1.2 list-watch工作机制 二 集群调度 2.1 调度过程 2.2 Predicate 和 Priorities 的常见算法和优先级选项 2.3 调度方式 三 亲和性 3.1 节点亲和性 3.2 Pod 亲和性 3.3 键值运算关系 3.4 Pod亲和性与反亲和性 3.5 示例…

【小记】简历 Tips

基本信息 真实诚信 教育经历&#xff08;院校信息&#xff09;、成绩、在校经历&#xff1b; 公司、项目经历 注意事项 逻辑清晰、重点突出、岗位JD完全吻合&#xff1b; 简洁&#xff08;一页纸简历、顺序从上到下&#xff09; 做了什么&#xff08;时间顺序&#xff09; 成果…

Escalate_Linux-环境变量劫持提权(5)

环境变量劫持提权 在Shll输入命令时&#xff0c;Shel会按PAH环境变量中的路径依次搜索命令&#xff0c;若是存在同名的命令&#xff0c;则执行最先找到的&#xff0c;若是PATH中加入了当前目录&#xff0c;也就是“”这个符号&#xff0c;则可能会被黑客利用&#xff0c;例如在…

冯诺依曼体系结构 计算机组成的金字塔

01 冯诺依曼体系结构&#xff1a;计算机组成的金字塔 学习计算机组成原理&#xff0c;到底是在学些什么呢&#xff1f;这个事儿&#xff0c;一两句话还真说不清楚。不过没关系&#xff0c;我们先从“装电脑”这个看起来没有什么技术含量的事情说起&#xff0c;来弄清楚计算机到…

Zookeeper客户端命令、JAVA API、监听原理、写数据原理以及案例

1. Zookeeper节点信息 指定服务端&#xff0c;启动客户端命令&#xff1a; bin/zkCli.sh -server 服务端主机名:端口号 1&#xff09;ls / 查看根节点下面的子节点 ls -s / 查看根节点下面的子节点以及根节点详细信息 其中&#xff0c;cZxid是创建节点的事务id&#xff0c…

QWidget: Must construct a QApplication before a QWidget 13:25:48: 程序异常结束。

QWidget: Must construct a QApplication before a QWidget 13:25:48: 程序异常结束。 你的插件是release&#xff0c;而你用了debug模式、

Yolov8有效涨点:YOLOv8-AM,采用多种注意力模块提高检测精度,含代码,超详细

前言 2023 年&#xff0c;Ultralytics 推出了最新版本的 YOLO 模型。注意力机制是提高模型性能最热门的方法之一。 本次介绍的是YOLOv8-AM&#xff0c;它将注意力机制融入到原始的YOLOv8架构中。具体来说&#xff0c;我们分别采用四个注意力模块&#xff1a;卷积块注意力模块…

max_element和min_element使用

头文件 #include<alorithm> 作用 用于返回数组或容器中最值元素(最小值、最大值)&#xff0c;值和下标。 使用举例 #include<iostream> #include<vector> #include<algorithm> using namespace std; int main() {/*数组初始化*/vector<int>…

Django入门指南:从环境搭建到模型管理系统的完整教程

环境安装&#xff1a; ​ 由于我的C的Anaconda 是安装在C盘的&#xff0c;但是没内存了&#xff0c;所有我将环境转在e盘&#xff0c;下面的命令是创建环境到指定目录中. conda create --prefixE:\envs\dj42 python3.9进入环境中&#xff1a; conda activate E:\envs\dj42…