【论文阅读】Consistency Models

news2025/5/14 17:42:57

文章目录

  • Introduction
  • Diffusion Models
  • Consistency Models
    • Definition
    • Parameterization
    • Sampling
  • Training Consistency Models via Distillation
  • Training Consistency Models in Isolation
  • Experiment

Introduction

  • 相比于单步生成的模型(例如 GANs, VAEs, normalizing flows),扩散模型的迭代式生成过程需要 10 到 2000 步计算来采样,导致推理速度低,实时性应用受限.

  • 本文的目的是创造高效、单步的生成,同时不牺牲迭代采样的优势。在数据到噪声的 PF-ODE 轨迹上,学习轨迹上任意点到轨迹起点的映射,对这些映射的建模成为 consistency model.
    在这里插入图片描述

  • 两种训练 consistency model的方法

    1. 使用 numerical ODE solver 和预训练的扩散模型在 PF-ODE 轨迹上生成若干相邻点对,通过最小化模型输出点对间的距离(相似度),蒸馏出 consistency model.
    2. 不依赖预训练扩散模型,独立训练一个 consistency model.
  • 在一些数据集上测试.

Diffusion Models

使用 p d a t a ( x ) p_{data}(\mathrm{x}) pdata(x)表示数据分布,扩散模型使用如下随机微分公式对服从原分布的数据进行扩散:

d x t = μ ( , x t , t ) + σ ( t ) d w t \large \mathrm{dx}_t = \mu(\mathrm,{x}_t, t) + \sigma(t)\mathrm{dw}_t dxt=μ(,xt,t)+σ(t)dwt

其中 t t t为时间步,范围是 0 0 0 T T T μ ( ⋅ , ⋅ ) \mu(·,·) μ(⋅,⋅) σ ( ⋅ ) \sigma(·) σ()分别是布朗运动中的漂移系数和扩散系数, x t \mathbf{x}_t xt服从分布 p t ( x ) p_{t}(\mathrm{x}) pt(x) x 0 \mathrm{x}_0 x0服从分布 p d a t a ( x ) p_{data}(\mathrm{x}) pdata(x). 该方程的一个重要属性是,其存在一个 PF-ODE 方程:

d x t = [ μ ( x t , t ) − 1 2 σ ( t ) 2 ∇ log ⁡ p t ( x t ) ] d t \large\mathrm{dx}_t = \left[ \mu(\mathrm{x}_t, t)-\frac{1}{2}\sigma(t)^2 \nabla\log{p_t(\mathrm{x}_t)} \right]\mathrm{d}t dxt=[μ(xt,t)21σ(t)2logpt(xt)]dt

其中 ∇ log ⁡ p t ( x ) \nabla\log{p_t(\mathrm{x})} logpt(x) p t ( x ) p_t(\mathrm{x}) pt(x)的 score function.
在 SDE 中,令漂移系数 μ ( x , t ) = 0 \mu(\mathrm{x}, t) = 0 μ(x,t)=0, 扩散系数 σ ( t ) = 2 t \sigma(t) = \sqrt{2t} σ(t)=2t . 使用得分匹配的方式训练模型 s ϕ ( x , t ) ≈ ∇ log ⁡ p t ( x ) s_{\phi}(\mathrm{x},t) \approx \nabla\log{p_t(\mathrm{x})} sϕ(x,t)logpt(x),代入 PF-ODE 方程,得到 empirical PF-ODE:

d x t d t = − t s ϕ ( x t , t ) \large \frac{\mathrm{dx}_t}{\mathrm{d}t}=-ts_{\phi}(\mathrm{x}_t,t) dtdxt=tsϕ(xt,t

采样时,使用 x ^ T ∼ N ( 0 , T 2 I ) \hat{\mathrm{x}}_T\sim\mathcal{N}(0, T^2I) x^TN(0,T2I)初始化,再使用 numerical ODE solver(例如 Euler, Heun)按时间步倒推出 x ^ 0 \hat{x}_0 x^0. 为了防止数值不稳定,会在 t = ϵ t=\epsilon t=ϵ是提前终止, ϵ \epsilon ϵ为一个正小数,同时将 x ^ ϵ \hat{\mathrm{x}}_{\epsilon} x^ϵ作为结果.

扩散模型的瓶颈在于采样速度慢, ODE solver 利用得分模型 s ϕ ( x , t ) s_{\phi}(\mathrm{x},t) sϕ(x,t)迭代求解,消耗算力多. 目前存在一些更快的 ODE solver,但是仍然需要大于 10 10 10 步的采样. 也存在一些蒸馏方法,但是大多数方法需要从扩散模型中采集巨大的数据集,同样消耗算力多.

Consistency Models

Definition

根据 PF-ODE 得到一条解路径 { x t } t ∈ [ ϵ , T ] \{\mathrm{x}_t\}_{t\in[\epsilon, T]} {xt}t[ϵ,T],将 consistency function 定义为:

f : ( x t , t ) ↦ x ϵ \large f:(\mathrm{x}_t, t) \mapsto \mathrm{x}_{\epsilon} f:(xt,t)xϵ

对于该路径上的任意点 ( x t , t ) (\mathrm{x}_t, t) (xt,t),其输出是一致的. 对于任意的 t , t ′ ∈ [ ϵ , T ] t, t' \in [\epsilon, T] t,t[ϵ,T],有 f ( x t , t ) = f ( x t ′ , t ′ ) f(\mathrm{x}_t, t) =f(\mathrm{x}_{t'}, t') f(xt,t)=f(xt,t)恒成立.
在这里插入图片描述

Parameterization

F θ ( x , t ) F_{\theta}(\mathrm{x}, t) Fθ(x,t)表示任意形式的神经网络,使用 sikp connection 可以将模型表示为:

f θ ( x , t ) = c s k i p ( t ) x + c o u t ( t ) F θ ( x , t ) \large f_{\theta}(\mathrm{x}, t)=c_{skip}(t)\mathrm{x}+c_{out}(t)F_{\theta}(\mathrm{x},t) fθ(x,t)=cskip(t)x+cout(t)Fθ(x,t)

其中边界条件为 c s k i p ( ϵ ) = 1 c_{skip}(\epsilon)=1 cskip(ϵ)=1 c o u t ( ϵ ) = 0 c_{out}(\epsilon)=0 cout(ϵ)=0.
具体为:

c s k i p ( t ) = σ d a t a 2 ( t − ϵ ) 2 + σ d a t a 2 \large c_{skip}(t)=\frac{\sigma_{data}^2}{(t-\epsilon)^2+\sigma_{data}^2} cskip(t)=(tϵ)2+σdata2σdata2

c o u t ( t ) = σ d a t a ( t − ϵ ) σ d a t a 2 + t 2 \large c_{out}(t)=\frac{\sigma_{data}(t-\epsilon)}{\sqrt{\sigma_{data}^2+t^2}} cout(t)=σdata2+t2 σdata(tϵ)

σ d a t a \sigma_{data} σdata取值 0.5 0.5 0.5.

Sampling

有了一个训练好的 consistency model f θ ( ⋅ , ⋅ ) f_{\theta}(·, ·) fθ(⋅,⋅)之后,从高斯噪声 N ( 0 , T 2 I ) \mathcal{N}(0, T^2I) N(0,T2I)采样 x ^ T \hat{\mathrm{x}}_T x^T,再代入模型一步推出 x ^ ϵ = f θ ( x T ^ , T ) \hat{\mathrm{x}}_{\epsilon}=f_{\theta}(\hat{\mathrm{x}_T}, T) x^ϵ=fθ(xT^,T).为了提高质量,也可以进行多步采样,算法如下:

在这里插入图片描述

Training Consistency Models via Distillation

作者的第一个方法是在预训练的得分模型 s ϕ ( x , t ) s_{\phi}(\mathrm{x},t) sϕ(x,t)上蒸馏.

首先考虑将 ϵ \epsilon ϵ T T T的时间离散化成 N − 1 N-1 N1 个间隔,也即 t 1 = ϵ < t 2 < t 3 < . . . < t N = T t_1=\epsilon<t_2<t_3<...<t_N=T t1=ϵ<t2<t3<...<tN=T. 在实践中,使用如下公式:

t i = ( ϵ 1 / ρ + i − 1 N − 1 ( T 1 / ρ − ϵ 1 / ρ ) ) ρ \large t_i=\left(\epsilon^{1/\rho} + \frac{i-1}{N-1}\left(T^{1/\rho}-\epsilon^{1/\rho}\right) \right)^{\rho} ti=(ϵ1/ρ+N1i1(T1/ρϵ1/ρ))ρ

其中 ρ = 7 \rho=7 ρ=7. 当 N N N充分大时,可以获得 x t n \mathrm{x}_{t_n} xtn x t n + 1 \mathrm{x}_{t_{n+1}} xtn+1的准确估计,于是 x ^ t n ϕ \hat{\mathrm{x}}_{t_n}^{\phi} x^tnϕ可以定义为:

x ^ t n ϕ = x t n + 1 + ( t n − t n + 1 ) Φ ( x t n + 1 , t n + 1 ; ϕ ) \large \hat{\mathrm{x}}_{t_n}^{\phi}=\mathrm{x}_{t_{n+1}} + (t_n-t_{n+1})\Phi(\mathrm{x}_{t_{n+1}}, t_{n+1};\phi) x^tnϕ=xtn+1+(tntn+1)Φ(xtn+1,tn+1;ϕ)

Φ ( . . . ; ϕ ) \Phi(...;\phi) Φ(...;ϕ)为 one-step ODE solver(比如Euler).

从数据集中采样 x \mathrm{x} x,通过 SDE 加噪 N ( x , t n + 1 2 I ) \mathcal{N}(\mathrm{x}, t_{n+1}^2I) N(x,tn+12I)得到 x t n + 1 \mathrm{x}_{t_{n+1}} xtn+1, 然后使用 ODE solver 求解出 x ^ t n ϕ \hat{\mathrm{x}}_{t_n}^{\phi} x^tnϕ,通过最小化在 x ^ t n ϕ \hat{\mathrm{x}}_{t_n}^{\phi} x^tnϕ x t n + 1 \mathrm{x}_{t_{n+1}} xtn+1计算结果的差距训练模型.

Definition 1
consistency distillation loss (CD)表示为:

L C D N ( θ , θ − ; ϕ ) = E [ λ ( t n ) d ( f θ ( x t n + 1 , t n + 1 ) , f θ − ( x ^ t n ϕ , t n ) ] \large \mathcal{L}_{CD}^{N}(\theta, \theta^-;\phi)=\mathbb{E}\left[\lambda(t_n)d(f_{\theta}(\mathrm{x}_{t_{n+1}},t_{n+1}),f_{\theta^-}(\hat{\mathrm{x}}_{t_n}^{\phi}, t_n) \right] LCDN(θ,θ;ϕ)=E[λ(tn)d(fθ(xtn+1,tn+1),fθ(x^tnϕ,tn)]

其中, λ ( ⋅ ) ∈ R + \lambda(·)\in\mathbb{R}^+ λ()R+是正权重函数, θ − \theta^- θ θ \theta θ在优化过程中历史值的均值. d ( ⋅ , ⋅ ) d(·,·) d(⋅,⋅)是一个度量函数,满足当且仅当两个输入相等时为 0 0 0,其余情况大于 0 0 0.

作者考虑 d ( ⋅ , ⋅ ) d(·,·) d(⋅,⋅) 使用 l 1 l_1 l1 以及 l 2 l_2 l2,在实验中 λ ( t n ) ≡ 1 \lambda(t_n) \equiv1 λ(tn)1表现较好. θ − \theta^- θ使用 EMA 更新,计算公式如下:

θ − ← s t o p g a r d ( μ θ − + ( 1 − μ ) θ ) \large \theta^- \leftarrow \mathrm{stopgard}(\mu\theta^-+(1-\mu)\theta) θstopgard(μθ+(1μ)θ)

其中 0 ≤ μ < 1 0\le\mu<1 0μ<1. 使用 EMA 可以使训练更稳定,同时能提高模型的表现.
模型训练算法如下:
在这里插入图片描述

Training Consistency Models in Isolation

consistency model 可以不依赖预训练扩散模型训练,使用如下无偏估计替换 ∇ log ⁡ p t ( x ) \nabla\log{p_t(\mathrm{x})} logpt(x)

∇ log ⁡ p t ( x ) = − E [ x t − x t 2 ∣ x t ] \large \nabla\log{p_t(\mathrm{x})}=-\mathbb{E}\left[\left.\frac{\mathrm{x}_t-\mathrm{x}}{t^2}\right|\mathrm{x}_t \right] logpt(x)=E[t2xtx xt]

consistency training loss (CT)表示为:

L C D N ( θ , θ − ) = E [ λ ( t n ) d ( f θ ( x + t n + 1 z , t n + 1 ) , f θ − ( x + t n z , t n ) ] \large \mathcal{L}_{CD}^{N}(\theta, \theta^-)=\mathbb{E}\left[\lambda(t_n)d(f_{\theta}(\mathrm{x}+t_{n+1}\mathrm{z},t_{n+1}),f_{\theta^-}(\mathrm{x}+t_{n}\mathrm{z},t_{n}) \right] LCDN(θ,θ)=E[λ(tn)d(fθ(x+tn+1z,tn+1),fθ(x+tnz,tn)]

其中 z ∼ N ( 0 , I ) \mathrm{z}\sim\mathcal{N}(0,I) zN(0,I). 损失函数的计算依赖于 f θ f_{\theta} fθ f θ − f_{\theta^-} fθ,且与扩散模型的无关.

为了提升模型效果,使用 schedule function N ( ⋅ ) N(·) N()控制 N N N 增长. 直觉上,当 N N N 小的时候,使用 consistency distillation loss 模型在一开始收敛更快,同时方差小、偏差大. 反之,在训练结束时,应当使 N N N 大,这样方差大、偏差小。同时,使用 schedule function μ ( ⋅ ) \mu(·) μ()替换 μ \mu μ,让它随着 N N N 增长而变化.
N ( ⋅ ) N(·) N() μ ( ⋅ ) \mu(·) μ()具体为

N ( k ) = ⌈ k K ( ( s 1 + 1 ) 2 − s 0 2 ) + s 0 2 − 1 ⌉ + 1 \large N(k)= \left\lceil\sqrt{\frac{k}{K}((s_1+1)^2-s_0^2)+s_0^2}-1 \right\rceil+1 N(k)= Kk((s1+1)2s02)+s02 1 +1

μ ( k ) = exp ⁡ ( s 0 log ⁡ μ 0 N ( k ) ) \large \mu(k)=\exp\left(\frac{s_0\log{\mu_0}}{N(k)}\right) μ(k)=exp(N(k)s0logμ0)

K K K表示整体训练步数, s 0 s_0 s0表示开始的离散化步数.

训练算法如下:
在这里插入图片描述

Experiment

关于 CD ,作者分别使用 l 1 l_1 l1, l 2 l_2 l2, L P I P S \mathrm{LPIPS} LPIPS作为度量函数,使用一阶Euler和二阶Heun座位 ODE solver, N N N { 9 , 12 , 18 , 36 , 50 , 60 , 80 , 120 } \{9,12,18,36,50,60,80,120\} {9,12,18,36,50,60,80,120},使用相应的预训练扩散模型做初始化. 使用 CT 训练的模型则随机初始化.
在这里插入图片描述

(a) 对比不同的度量函数在 CD 上的表现,其中 LPIPS 的效果最好.
(b, c) 对不不同 ODE solver 和 N N NCD 上的表现,使用 Heun 且 N N N 18 18 18时效果最好.在取相同的 N N N时,二阶Heun的表现优于一阶Euler,因为高阶的 ODE solver 的估计误差更小. 当 N N N充分大时,模型对 N N N变得不敏感.
(d) 根据之前的结论,关于 CT 的实验使用 LPIPS 作为度量函数. 更小的 N N N收敛更快,但是采样结构更差;使用自适应的 N ( ⋅ ) N(·) N() μ ( ⋅ ) \mu(·) μ()效果最好.

对比 CDprogressive disillation(PD) 在不同数据集上的效果,CD 的表现普遍比 PD 好.
在这里插入图片描述

对比 CT 和其它生成模型,仅使用一步或两步生成.
在这里插入图片描述

Zero-Shot Image Editing

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1383271.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

自行车商城网站网页设计与制作web前端设计html+css+js成品。电脑网站制作代开发。vscodeDrea

【自行车商城网站网页设计与制作web前端设计htmlcssjs成品。电脑网站制作代开发。vscodeDrea】 https://www.bilibili.com/video/BV1wT4y1p7jq/?share_sourcecopy_web&vd_sourced43766e8ddfffd1f1a1165a3e72d7605

Docker五部曲之四:Docker Compose

文章目录 前言Compose应用程序模型Compose规范顶层属性servicenetworkvolumesconfigssecrets 环境变量.env文件environment属性主机shell中的环境变量 Profiles&#xff08;剖面&#xff09;启动剖面自动启动剖面和依赖项解析 多compose.yml文件共享与扩展构建规范构建属性 部署…

MySQL主从复制配置(双主双从)

一、架构规划 一主多从可以缓解读的压力&#xff0c;但是如果主宕机了&#xff0c;所有从都不能写了&#xff0c;因此我们配置双主双从。 1、规划图 master1和master2互为主从关系&#xff0c;slave1是master1的从&#xff0c;slave2是master2的从。 2、环境准备 准备四台机…

浅谈对Maven的理解

一、什么是Maven Maven——是Java社区事实标准的项目管理工具&#xff0c;能帮你从琐碎的手工劳动中解脱出来&#xff0c;帮你规范整个组织的构建系统。不仅如此&#xff0c;它还有依赖管理、自动生成项目站点等特性&#xff0c;已经有无数的开源项目使用它来构建项目并促进团队…

WEB服务器-Tomcat

3. WEB服务器-Tomcat 3.1 简介 3.1.1 服务器概述 服务器硬件 指的也是计算机&#xff0c;只不过服务器要比我们日常使用的计算机大很多。 服务器&#xff0c;也称伺服器。是提供计算服务的设备。由于服务器需要响应服务请求&#xff0c;并进行处理&#xff0c;因此一般来说…

浅谈缓存最终一致性的解决方案

浅谈缓存最终一致性的解决方案 作者&#xff1a;clareguo&#xff0c;腾讯 CSIG 后台开发工程师 来源&#xff1a;腾讯技术工程open in new window 到底是更新缓存还是删除缓存? 到底是先更新数据库&#xff0c;再删除缓存&#xff0c;还是先删除缓存&#xff0c;再更新数据…

(Java企业 / 公司项目)分布式事务Seata详解(含Seata+Nacos组合使用)(二)

一. Seata Server配置Nacos 什么是配置中心?配置中心可以说是一个"大货仓",内部放置着各种配置文件,你可以通过自己所需进行获取配置加载到对应的客户端.比如Seata Client端(TM,RM),Seata Server(TC),会去读取全局事务开关,事务会话存储模式等信息.Seata的配置中心…

PyTorch项目源码学习(3)——Module类初步学习

torch.nn.Module Module类是用户使用torch来自定义网络模型的基础&#xff0c;Module的设计要求包括低耦合性&#xff0c;高模块化等等。一般来说&#xff0c;计算图上所有的子图都可以是Module的子类&#xff0c;包括卷积&#xff0c;激活函数&#xff0c;损失函数节点以及相…

计算机缺失mfu140u.dll的5种解决方法,亲测有效

在计算机系统运行过程中&#xff0c;mfu140u.dll文件的丢失是一个较为常见的问题场景。这个动态链接库文件(mfu140u.dll)对于系统的正常运行具有关键作用&#xff0c;它的缺失可能导致相关应用程序无法启动或执行功能异常。具体来说&#xff0c;mfu140u.dll丢失的场景可能出现在…

QT上位机开发(QSS美化)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 我们早期学习过web开发的同学都知道&#xff0c;web开发有三个部分&#xff0c;分别是html、css和java script。其中html负责控件生成和布局&#…

基于Matlab/Simulink的MIL仿真验证解决方案

文章目录 需求追溯 虚拟环境 模型检查 仿真验证 测试报告 参考文献 针对模型开发阶段的ECU算法&#xff0c;可以很直接地将其与虚拟车辆模型连接起来&#xff0c;通过MIL对其进行验证和确认。可以在开发过程的早期检测到设计错误和不正确的需求&#xff0c;也有助于安全地…

DSL查询文档--各种查询

DSL查询文档 elasticsearch的查询依然是基于JSON风格的DSL来实现的。 1查询所有 结果&#xff1a; 2全文检索&#xff08;full text&#xff09;查询 常见的全文检索查询包括&#xff1a; match查询&#xff1a;单字段查询 multi_match查询&#xff1a;多字段查询&#xff…

阿里云ingress配置时间超时的参数

一、背景 在使用阿里云k8s集群的时候&#xff0c;内网API网关&#xff0c;刚开始是用的是Nginx&#xff0c;后面又搭建了ingress。 区别于nginx配置&#xff0c;ingress又该怎么设置参数呢&#xff1f;比如http超时时间等等。 本文会先梳理nginx是如何配置&#xff0c;再对比…

AC修炼计划(AtCoder Beginner Contest 334)A~G

传送门&#xff1a;UNIQUE VISION Programming Contest 2023 Christmas (AtCoder Beginner Contest 334) - AtCoder A题是最最基础的语法题就不再讲解。 B - Christmas Trees 该题虽然分低&#xff0c;但我觉得还是很不错的。 给你 l 和 r &#xff0c;设满足题意的数字是x则…

TIFF转JPG助手:轻松批量转换,优化图片管理

在数字时代&#xff0c;图片已成为我们生活和工作中不可或缺的一部分。为了更好地管理和使用这些图片&#xff0c;我们需要一个强大的工具来帮助我们转换和优化图片格式。TIFF转JPG助手正是这样一款理想的解决方案 首先&#xff0c;我们进入首助编辑高手主页面&#xff0c;会看…

qayrup-switch开发文档

因为只是一个小组件,所以直接拿csdn当开发文档了 书接上文uniapp怎么开发插件并发布 : https://blog.csdn.net/weixin_44368963/article/details/135576511 因为我业没有开发过uniapp的组件,所以我看到下面这个文件还是有点懵的 也不清楚怎么引入, 然后去翻了翻官方文档,官方…

基于时域有限差分法的FDTD的计算电磁学算法-YEE网格下的更新公式推导

基于时域有限差分法的FDTD的计算电磁学算法&#xff08;含Matlab代码&#xff09;-YEE网格下的更新公式推导 参考书籍&#xff1a;The finite-difference time-domain method for electromagnetics with MATLAB simulations&#xff08;国内翻译版本&#xff1a;MATLAB模拟的电…

面试官问,如何在十亿级别用户中检查用户名是否存在?

面试官问&#xff0c;如何在十亿级别用户中检查用户名是否存在&#xff1f; 前言 不知道大家有没有留意过&#xff0c;在使用一些app注册的时候&#xff0c;提示你用户名已经被占用了&#xff0c;需要更换一个&#xff0c;这是如何实现的呢&#xff1f;你可能想这不是很简单吗…

StarRocks中有趣的点

最近在工作中&#xff0c;遇到有小伙伴使用StarRocks&#xff0c;所以看了下文档&#xff0c;感觉以下几点比较有趣。 支持MySQL协议 想必是为了通用性&#xff0c;StarRocks 提供MySQL协议接口&#xff0c;支持标准SQL语法。即可通过MySQL客户端连接StarRocks&#xff0c;并…