基于时域有限差分法的FDTD的计算电磁学算法-YEE网格下的更新公式推导

news2025/5/14 22:24:23

基于时域有限差分法的FDTD的计算电磁学算法(含Matlab代码)-YEE网格下的更新公式推导

参考书籍:The finite-difference time-domain method for electromagnetics with MATLAB simulations(国内翻译版本:MATLAB模拟的电磁学时域有限差分法)
代码推荐:The finite-difference time-domain method for electromagnetics with MATLAB simulations的附件代码
我最初也是基于这个代码学习的

FDTD算法:采用差分直接离散时域Maxwell方程,电磁场的求解基于时间步的迭代,无需存储全空间的电磁场信息,内存消耗较小,同时采用立方体网格和差分算法,网格形式和算法均十分简单,计算速度快,基于时域算法,特别适合“宽带问题”的求解。但是,简单的立方体方体网格带来的弊端就是模型拟合精度较低,对于含有精细结构的模型,计算精度较低,同时基于“微分方程”,计算区域需要设置截断
详细对比参考:常用计算电磁学算法特性与电磁软件分析

1、从麦克斯韦开始的FDTD时域有限差分法

1.1 麦克斯韦方程

FDTD叫时域有限差分法,显然,其依赖的麦克斯韦方程也是时域的。麦克斯韦时域微分方程为:
∇ × H = ∂ D ∂ t + J ∇ × E = − ∂ B ∂ t − M ∇ ⋅ D = ρ e ∇ ⋅ B = ρ m \begin{gathered} \nabla\times \mathbf{H}= {\frac{\partial \mathbf{D}}{\partial t}}+\boldsymbol{J} \\ \nabla\times \mathbf{E}=-{\frac{\partial \mathbf{B}}{\partial t}}-\mathbf{M} \\ \nabla\cdot\mathbf{D}=\rho_{\mathrm{e}} \\ \nabla\cdot \mathbf{B}=\rho_{m} \end{gathered} ×H=tD+J×E=tBMD=ρeB=ρm
式中,E为电场强度(V/m);D为电位移(C/m);H为磁场强度(A/m);B为磁通量密度(Wb/m°);J为电流密度(A/m);M为磁流密度(V/m); ρ e \rho_{e} ρe为电荷密度(C/m); ρ m \rho_{m} ρm为磁荷密度(Wb/m)。

依稀记得当时老师说,麦克斯韦方程有其直观理解,分别是:
1. 变化的电场和电流会产生磁场
2. 变化的磁场和磁荷会产生电场(自然界无磁荷,一般是等效出来)
3. 电流源产生电场
4. 磁流源产生磁场

1.2 本构关系

本构关系对补充麦克斯韦方程和描述媒质的特性是必要的,本构关系对线性、各向同性和非色散媒质可以写成:
D = ε E B = μ H . \begin{aligned}D&=\varepsilon E\\B&=\mu H\end{aligned}. DB=εE=μH.
其中, ε \varepsilon ε为媒质的介电常数; μ \mu μ为媒质的磁导率。在自由空间,有:
ε = ε 0 = 8.854 × 1 0 − 12 F / m μ = μ 0 = 4 π × 1 0 − 7 H / m \begin{aligned}\varepsilon=&\varepsilon_0=8.854\times10^{-12}\quad\mathrm{F/m}\\\mu=&\mu_0=4\pi\times10^{-7}\quad\mathrm{H/m}\end{aligned} ε=μ=ε0=8.854×1012F/mμ0=4π×107H/m
在常规的电磁学表述中,我们更多的使用相对介电常数。比如说耳熟能详的FR4板材,其相对介电常数大概是 ε r = 4.2 \varepsilon_r=4.2 εr=4.2。 这就代表其实际的介电常数为 ε F R 4 = ε r ε 0 \varepsilon_{FR4}=\varepsilon_r\varepsilon_0 εFR4=εrε0。但是,还有一个重要参数和本构关系相关,那就是损耗角正切 t a n δ tan \delta tanδ

对于FR4板材,一般认为其损耗角正切为 t a n δ = 0.02 tan \delta=0.02 tanδ=0.02,根据微波工程1.3小节的公式:
ϵ = ϵ ′ − j ϵ ′ ′ = ϵ ′ ( 1 − j tan ⁡ δ ) = ϵ 0 ϵ r ( 1 − j tan ⁡ δ ) \epsilon=\epsilon^{\prime}-j\epsilon^{\prime\prime}=\epsilon^{\prime}(1-j\tan\delta)=\epsilon_{0}\epsilon_{r}(1-j\tan\delta) ϵ=ϵjϵ′′=ϵ(1jtanδ)=ϵ0ϵr(1jtanδ),其对应的介电常数应该是:
ε F R 4 = ε r ( 1 − j tan ⁡ δ ) ε 0 = ( 4.2 − j 0.02 ) ε 0 \varepsilon_{FR4}=\varepsilon_r(1-j\tan\delta)\varepsilon_0=(4.2-j0.02)\varepsilon_0 εFR4=εr(1jtanδ)ε0=(4.2j0.02)ε0
其对应的相对介电常数为:4.2-j0.02

在进行FDTD的推导时,因为在 FDTD 的更新方程的过程中满足散度方程,所以只需要考虑两个旋度方程即可。麦克斯韦中的电流密度 J \boldsymbol{J} J等于导体电流密度 J c \boldsymbol{J_c} Jc与施加电流密度 J i \boldsymbol{J_i} Ji之和,即:
J = J c + J i \boldsymbol{J}=\boldsymbol{J_{\mathrm{c}}}+\boldsymbol{J_{\mathrm{i}}} J=Jc+Ji
对于磁流密度,也类似:
M = M c + M i \boldsymbol{M}=\boldsymbol{M_{\mathrm{c}}}+\boldsymbol{M_{\mathrm{i}}} M=Mc+Mi
因此,对原来的麦克斯韦方程拆分一下,就是:
∇ × H = ε ∂ E ∂ t + σ e E + J i \nabla\times \boldsymbol{H}=\varepsilon\frac{\partial \boldsymbol{E}}{\partial t}+\sigma^{e}\boldsymbol{E}+\boldsymbol{J_{i}} ×H=εtE+σeE+Ji
和:
∇ × E = − μ ∂ H ∂ t − σ m H − M i \nabla\times \boldsymbol{E}=-\mu\frac{\partial \boldsymbol{H}}{\partial t}-\sigma^{m}\boldsymbol{H}-\boldsymbol{M_{i}} ×E=μtHσmHMi

旋度的计算公式大家还记得不:
∇ × F ( x , y , z ) = ∣ i ^ j ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z F x F y F z ∣ = ( ∂ F z ∂ y − ∂ F y ∂ z ) i ^ + ( ∂ F x ∂ z − ∂ F z ∂ x ) j ^ + ( ∂ F y ∂ x − ∂ F x ∂ y ) k ^ \begin{aligned} &\nabla\times\mathbf{F}(x,y,z)=\begin{vmatrix}\hat{\boldsymbol{i}}&\hat{\boldsymbol{j}}&\hat{\boldsymbol{k}}\\\frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\F_x&F_y&F_z\end{vmatrix} \\ &=\left(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z}\right)\hat{\boldsymbol{i}}+\left(\frac{\partial F_x}{\partial z}-\frac{\partial F_z}{\partial x}\right)\hat{\boldsymbol{j}}+\left(\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y}\right)\hat{\boldsymbol{k}} \end{aligned} ×F(x,y,z)= i^xFxj^yFyk^zFz =(yFzzFy)i^+(zFxxFz)j^+(xFyyFx)k^
把麦克斯韦旋度方程按照三个方向x,y,z全部展开,就可以得到6个方程:
∂ E x ∂ t = 1 ε x ( ∂ H z ∂ y − ∂ H y ∂ z − σ x e E x − J i x ) ∂ E y ∂ t = 1 ε y ( ∂ H x ∂ z − ∂ H z ∂ x − σ y e E y − J i y ) ∂ E z ∂ t = 1 ε z ( ∂ H y ∂ x − ∂ H x ∂ y − σ z e E z − J i z ) ∂ H x ∂ t = 1 μ x ( ∂ E y ∂ z − ∂ E z ∂ y − σ x m H x − M i x ) ∂ H y ∂ t = 1 μ y ( ∂ E x ∂ x − ∂ E x ∂ z − σ y m H y − M i y ) ∂ H z ∂ t = 1 μ z ( ∂ E x ∂ y − ∂ E y ∂ x − σ z m H z − M i z ) \begin{gathered} \frac{\partial\boldsymbol{E}_x}{\partial t}= \frac1{\varepsilon_x}\Big(\frac{\partial H_z}{\partial y}-\frac{\partial H_y}{\partial z}-\sigma_x^eE_x-J_{ix}\Big) \\ \frac{\partial E_y}{\partial t}= \frac1{\varepsilon_y}\Big(\frac{\partial H_x}{\partial z}-\frac{\partial H_z}{\partial x}-\sigma_y^eE_y-J_{iy}\Big) \\ \frac{\partial E_z}{\partial t}= \frac{1}{\varepsilon_{z}}\Big(\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}-\sigma_{z}^{e}E_{z}-J_{iz}\Big) \\ \frac{\partial H_x}{\partial t}= \frac1{\mu_x}\Big(\frac{\partial E_y}{\partial z}-\frac{\partial E_z}{\partial y}-\sigma_x^mH_x-M_{ix}\Big) \\ \frac{\partial H_y}{\partial t}= \frac1{\mu_y}\Big(\frac{\partial\boldsymbol{E}_x}{\partial x}-\frac{\partial\boldsymbol{E}_x}{\partial\boldsymbol{z}}-\boldsymbol{\sigma}_y^\mathfrak{m}H_y-\boldsymbol{M}_{iy}\Big) \\ \frac{\partial H_z}{\partial t}= \frac{1}{\mu_{z}}\Big(\frac{\partial\boldsymbol{E}_{x}}{\partial y}-\frac{\partial\boldsymbol{E}_{y}}{\partial x}-\sigma_{z}^{\mathfrak{m}}H_{z}-\boldsymbol{M}_{iz}\Big) \end{gathered} tEx=εx1(yHzzHyσxeExJix)tEy=εy1(zHxxHzσyeEyJiy)tEz=εz1(xHyyHxσzeEzJiz)tHx=μx1(zEyyEzσxmHxMix)tHy=μy1(xExzExσymHyMiy)tHz=μz1(yExxEyσzmHzMiz)

2、空间差分与时间差分

2.1、非常简单的差分方程

FDTD是在离散网格中进行迭代的,上面的麦克斯韦公式有大量的求导计算,这该如何解决呢?答案是差分近似。大家学高数都学过导数的近似吧:
f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f^{'}(x)=\underset{\Delta x\to0}{\operatorname*{lim}}\frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)=Δx0limΔxf(x+Δx)f(x)
如果 Δ x \Delta x Δx非常小,那么:
f ′ ( x ) ≈ f ( x + Δ x ) − f ( x ) Δ x f^{'}(x)\approx\frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)Δxf(x+Δx)f(x)
但是为了实现更高的精度,所以采用FDTD都会采用双向差分公式:
f ′ ( x ) ≈ f ( x + Δ x ) − f ( x − Δ x ) 2 Δ x f^{^{\prime}}(x){\approx}\frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x} f(x)xf(x+Δx)f(xΔx)
实际上,此处使用的是近似,也存在高阶的FDTD的算法,对于此近似考虑了更多项,精度会更高(参考“基于高阶时域有限差分法平面波及完全匹配层的研究”等):
f ′ ( x ) = f ( x + Δ x ) − f ( x − Δ x ) 2 Δ x − ( Δ x 2 ) 6 + . . . = f ( x + Δ x ) − f ( x − Δ x ) 2 Δ x + O ( ( Δ x ) 2 ) f^{\prime}(x)=\frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x}-\frac{(\Delta x^{2})}{6}+...=\frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x}+O((\Delta x)^{2}) f(x)=xf(x+Δx)f(xΔx)6(Δx2)+...=xf(x+Δx)f(xΔx)+O((Δx)2)

2.2、差分方程的运用

在FDTD算法中,网格被剖分为YEE网格的形式,电场和磁场元胞差半个身位,其更新的时间步也是差 0.5 Δ t 0.5\Delta t 0.5Δt
在这里插入图片描述
具体来讲,实际的电场网格和磁场网格的位置是:
E x ( i , j , k ) ⇒ ( ( i − 0 , 5 ) Δ x , ( j − 1 ) Δ y , ( k − 1 ) Δ z ) E y ( i , j , k ) ⇒ ( ( i − 1 ) Δ x , ( j − 0.5 ) Δ y , ( k − 1 ) Δ z ) E z ( i , j , k ) ⇒ ( ( i − 1 ) Δ x , ( j − 1 ) Δ y , ( k − 0.5 ) Δ z ) H x ( i , j , k ) ⇒ ( ( i − 1 ) Δ x , ( j − 0.5 ) Δ y , ( k − 0.5 ) Δ z ) H y ( i , j , k ) ⇒ ( ( i − 0.5 ) Δ x , ( j − 1 ) Δ y , ( k − 0.5 ) Δ z ) H z ( i , j , k ) ⇒ ( ( i − 0.5 ) Δ x , ( j − 0.5 ) Δ y , ( k − 1 ) Δ z ) \begin{aligned} E_x(i,j,k)\Rightarrow\left((i-0,5)\Delta x,(j-1)\Delta y,(k-1)\Delta z\right)\\ E_y(i,j,k)\Rightarrow\left((i-1)\Delta x,(j-0.5)\Delta y,(k-1)\Delta z\right)\\ E_z(i,j,k)\Rightarrow\left((i-1)\Delta x,(j-1)\Delta y,(k-0.5)\Delta z\right)\\ H_x(i,j,k)\Rightarrow\left((i-1)\Delta x,(j-0.5)\Delta y,(k-0.5)\Delta z\right)\\ H_y(i,j,k)\Rightarrow((i-0.5)\Delta x,(j-1)\Delta y,(k-0.5)\Delta z) \\ H_z(i,j,k)\Rightarrow((i-0.5)\Delta x,(j-0.5)\Delta y,(k-1)\Delta z) \end{aligned} Ex(i,j,k)((i0,5)Δx,(j1)Δy,(k1)Δz)Ey(i,j,k)((i1)Δx,(j0.5)Δy,(k1)Δz)Ez(i,j,k)((i1)Δx,(j1)Δy,(k0.5)Δz)Hx(i,j,k)((i1)Δx,(j0.5)Δy,(k0.5)Δz)Hy(i,j,k)((i0.5)Δx,(j1)Δy,(k0.5)Δz)Hz(i,j,k)((i0.5)Δx,(j0.5)Δy,(k1)Δz)

更新的时间步也是差 0.5 Δ t 0.5\Delta t 0.5Δt:FDTD算法在离散的时间瞬间取样和计算场值,但是电场和磁场取样计算并不是在相同的时刻。对时间步 Δ t \Delta t Δt,电场E的取样时刻为:0, Δ t \Delta t Δt,2 Δ t \Delta t Δt,3 Δ t \Delta t Δt,…,n Δ t \Delta t Δt;而磁场H取样时刻为:0.5 Δ t \Delta t Δt,1.5 Δ t \Delta t Δt,2.5 Δ t \Delta t Δt,…(n+0.5) Δ t \Delta t Δt。即电场取样在时间的整数步长时刻,而磁场取样时刻为半整数时间步时刻。它们之间的时间差为半个时间步。

因此,考虑一个上面得到的麦克斯韦的方程(以Ex方向为例):
∂ E x ∂ t = 1 ε x ( ∂ H z ∂ y − ∂ H y ∂ z − σ x e E x − J i r ) \frac{\partial E_x}{\partial t}=\frac1{\varepsilon_x}\left(\frac{\partial H_z}{\partial y}-\frac{\partial H_y}{\partial z}-\sigma_x^eE_x-J_{ir}\right) tEx=εx1(yHzzHyσxeExJir)
观察其导数项,分别有时间的差分项 ∂ E x ∂ t \frac{\partial E_x}{\partial t} tEx和空间的差分项 ∂ H z ∂ y \frac{\partial H_z}{\partial y} yHz ∂ H y ∂ z \frac{\partial H_y}{\partial z} zHy

方程中的导数可以用中心差分来近似,此时 E x n ( i , j , k ) E_x^n(i,j,k) Exn(i,j,k)的位置为中心差分公式的中心点,而时间上应以 ( n + 0.5 ) Δ t (n+0.5)\Delta t (n+0.5)Δt作为中心点(因为电场E的取样时刻为:0, Δ t \Delta t Δt,2 Δ t \Delta t Δt,3 Δ t \Delta t Δt,…,n Δ t \Delta t Δt,而 ( n + 0.5 ) Δ t (n+0.5)\Delta t (n+0.5)Δt差分后可以得到n和n+1,符合取样时刻)。因此,第一项 ∂ E x ∂ t \frac{\partial E_x}{\partial t} tEx可以写成如下的差分形式:
E x n + 0.5 ( i , j , k ) = E x n + 1 ( i , j , k ) − E x n ( i , j , k ) Δ t E_x^{n+0.5}(i,j,k)=\frac{E_x^{n+1}(i,j,k)-E_x^n(i,j,k)}{\Delta t} Exn+0.5(i,j,k)=ΔtExn+1(i,j,k)Exn(i,j,k)
而空间的差分项 ∂ H z ∂ y \frac{\partial H_z}{\partial y} yHz可以写成:
∂ H z ∂ y = H z n + 1 2 ( i , j , k ) − H z n + 1 2 ( i , j − 1 , k ) Δ y \frac{\partial H_z}{\partial y}=\frac{H_z^{n+\frac12}(i,j,k)-H_z^{n+\frac12}(i,j-1,k)}{\Delta y} yHz=ΔyHzn+21(i,j,k)Hzn+21(i,j1,k)

2.3、得到差分方程

把所有项都写成差分形式,就可以得到3D的FDTD更新方程:
E x n + 1 ( i , j , k ) = C e x e ( i , j , k ) × E x n ( i , j , k ) + C e x h z ( i , j , k ) × ( H z n + 1 2 ( i , j , k ) − H z n + 1 2 ( i , j − 1 , k ) ) + C e x h y ( i , j , k ) × ( H y n + 1 2 ( i , j , k ) − H y n + 1 2 ( i , j , k − 1 ) ) + C e x j ( i , j , k ) × J i x n + 1 2 ( i , j , k ) \begin{aligned} E_{x}^{n+1}\left(i,j,k\right)& =C_{exe}(i,j,k)\times E_x^n(i,j,k) \\ &+C_{exhz}(i,j,k)\times(H_{z}^{n+\frac12}(i,j,k)-H_{z}^{n+\frac12}(i,j-1,k)) \\ &+C_{\mathrm{exhy}}(i,j,k)\times(H_y^{n+\frac12}(i,j,k)-H_y^{n+\frac12}(i,j,k-1)) \\ &+C_{exj}\left(i,j,k\right)\times J_{ix}^{n+\frac12}(i,j,k) \end{aligned} Exn+1(i,j,k)=Cexe(i,j,k)×Exn(i,j,k)+Cexhz(i,j,k)×(Hzn+21(i,j,k)Hzn+21(i,j1,k))+Cexhy(i,j,k)×(Hyn+21(i,j,k)Hyn+21(i,j,k1))+Cexj(i,j,k)×Jixn+21(i,j,k)
C开头的都是系数,为了书写方便,其实际的值为:
C e x e ( i , j , k ) = 2 ε z ( i , j , k ) − Δ t σ z e ( i , j , k ) 2 ε z ( i , j , k ) + Δ t σ z e ( i , j , k ) C e x h y ( i , j , k ) = 2 Δ t ( 2 ε z ( i , j , k ) + Δ t σ z e ( i , j , k ) ) Δ x C e x h y ( i , j , k ) = − 2 Δ t ( 2 ε z ( i , j , k ) + Δ t σ z e ( i , j , k ) ) Δ y C e x j ( i , j , k ) = − 2 Δ t 2 ε z ( i , j , k ) + Δ t σ z e ( i , j , k ) \begin{gathered} C_{exe}(i,j,k)= \frac{2\varepsilon_z(i,j,k)-\Delta t\sigma_z^e(i,j,k)}{2\varepsilon_z(i,j,k)+\Delta t\sigma_z^e(i,j,k)} \\ C_{exhy}(i,j,k)= \frac{2\Delta t}{(2\varepsilon_z(i,j,k)+\Delta t\sigma_z^e(i,j,k))\Delta x} \\ C_{{exhy}}(i,j,k)= -\frac{2\Delta t}{(2\varepsilon_z(i,j,k)+\Delta t\sigma_z^e(i,j,k))\Delta y} \\ C_{exj}\left(i,j,k\right) =-\frac{2\Delta t}{2\varepsilon_z(i,j,k)+\Delta t\sigma_z^e(i,j,k)} \end{gathered} Cexe(i,j,k)=2εz(i,j,k)+Δtσze(i,j,k)2εz(i,j,k)Δtσze(i,j,k)Cexhy(i,j,k)=(2εz(i,j,k)+Δtσze(i,j,k))ΔxtCexhy(i,j,k)=(2εz(i,j,k)+Δtσze(i,j,k))ΔytCexj(i,j,k)=2εz(i,j,k)+Δtσze(i,j,k)t
当然,这只是6个方程中的一个,更加详细的方程参考:
MATLAB模拟的电磁学时域有限差分法的1.3。看看对应的matlab代码是怎么写的(没有电流就可以省略Cexj):

current_time  = current_time + dt/2;

Ex(1:nx,2:ny,2:nz) = Cexe(1:nx,2:ny,2:nz).*Ex(1:nx,2:ny,2:nz) ...
                     + Cexhz(1:nx,2:ny,2:nz).*...
                     (Hz(1:nx,2:ny,2:nz)-Hz(1:nx,1:ny-1,2:nz)) ...
                     + Cexhy(1:nx,2:ny,2:nz).*...
                     (Hy(1:nx,2:ny,2:nz)-Hy(1:nx,2:ny,1:nz-1));   
% General electric field updating coefficients
% Coeffiecients updating Ex
Cexe  =  (2*eps_r_x*eps_0 - dt*sigma_e_x) ...
    ./(2*eps_r_x*eps_0 + dt*sigma_e_x);
Cexhz =  (2*dt/dy)./(2*eps_r_x*eps_0 + dt*sigma_e_x);
Cexhy = -(2*dt/dz)./(2*eps_r_x*eps_0 + dt*sigma_e_x);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1383238.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

面试官问,如何在十亿级别用户中检查用户名是否存在?

面试官问,如何在十亿级别用户中检查用户名是否存在? 前言 不知道大家有没有留意过,在使用一些app注册的时候,提示你用户名已经被占用了,需要更换一个,这是如何实现的呢?你可能想这不是很简单吗…

StarRocks中有趣的点

最近在工作中,遇到有小伙伴使用StarRocks,所以看了下文档,感觉以下几点比较有趣。 支持MySQL协议 想必是为了通用性,StarRocks 提供MySQL协议接口,支持标准SQL语法。即可通过MySQL客户端连接StarRocks,并…

Linux系统SSH远程管理服务概述

目录 一.SSH协议 1.定义 2.优点 (1)加密 (2)压缩 3.SSH的客户端与服务端 (1)客户端 (2)服务端 4.原理 5.实验:使用ssh远程登录 二.OpenSSH服务器 1.概念 2.…

Wargames与bash知识17

Wargames与bash知识17 Bandit25(Bandit26) 关卡提示 从bandit25登录到bandit26应该相当容易…用户bandit26的shell不是/bin/bash,而是其他东西。找出它是什么,它是如何工作的,以及如何摆脱它。 推荐命令 ssh, cat, …

ssm基于vue的儿童教育网站的设计与实现论文

摘 要 传统信息的管理大部分依赖于管理人员的手工登记与管理,然而,随着近些年信息技术的迅猛发展,让许多比较老套的信息管理模式进行了更新迭代,视频信息因为其管理内容繁杂,管理数量繁多导致手工进行处理不能满足广大…

Java锁的分类

系列文章目录 第一章 Java线程池技术应用 第二章 CountDownLatch和Semaphone的应用 第三章 Spring Cloud 简介 第四章 Spring Cloud Netflix 之 Eureka 第五章 Spring Cloud Netflix 之 Ribbon 第六章 Spring Cloud 之 OpenFeign 第七章 Spring Cloud 之 GateWay 第八章 Sprin…

关于Web Tours

Web Tours 文章目录 简介下载解压安装并启动地址注册登录特殊情况 简介 Web Tours是惠普loadrunner自带的一个飞机订票系统网站,默认支持SQL Server数据库、Access、Mysql等多种数据库,基于ie、Chrome、Firefox等浏览器,Web Tours网站主要提…

Jenkins-执行脚本案例-初步认识JenKins的使用

环境搭建 docker pull jenkins/jenkins:2.440 docker run -d -p 10240:8080 -p 10241:50000 -v /env/liyong/data/docker/jenkins_mount:/var/jenkins_home -v /etc/localtime:/etc/localtime --name jenkins jenkins/jenkins:2.440 #在挂载的目录下去修改仓库地址 vim hudson…

mysql复制表的几种常用方法

遇到需要拷贝一个表及其数据的情况,总结了一下几种方法 1.使用 show create table 旧表 将结果拷贝出来,将旧表名换成新表名即可. 注意:该方法仅适用于拷贝表结构,不需要同步数据的情况 show create table 旧表名2.create table 新表 like 旧表 该语句将完全拷贝旧表结构, …

15个为你的品牌增加曝光的维基百科推广方法-华媒舍

维基百科是全球最大的免费在线百科全书,拥有庞大的用户群体和高质量的内容。在如今竞争激烈的市场中,利用维基百科推广品牌和增加曝光度已成为许多企业的重要策略。本文将介绍15种方法,帮助你有效地利用维基百科推广品牌,提升曝光…

代码随想录算法训练营第四天|24. 两两交换链表中的节点,19.删除链表的倒数第N个节点,面试题 02.07. 链表相交,142.环形链表II,总结

系列文章目录 代码随想录算法训练营第一天|数组理论基础,704. 二分查找,27. 移除元素 代码随想录算法训练营第二天|977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵II 代码随想录算法训练营第三天|链表理论基础&#xff…

【IDEA】瑞_IDEA模版注释设置_IDEA自动生成注释模版(详细图文步骤)

文章目录 1 概要2 类的自定义模版注释3 自定义模版注释3.1 方法的自定义模版注释3.2 属性的自定义模版注释 🙊 前言:在Java开发中,注释具有不可或缺的重要性,注释负责解释代码,能帮助开发人员深入理解代码的逻辑和功能…

强化学习应用(三):基于Q-learning算法的无人车配送路径规划(提供Python代码)

一、Q-learning算法介绍 Q-learning是一种强化学习算法,用于解决基于环境的决策问题。它通过学习一个Q-table来指导智能体在不同状态下采取最优动作。下面是Q-learning算法的基本步骤: 1. 定义环境:确定问题的状态和动作空间,并…

宝塔面板安装MySQL8数据库

第一步:搜索mysql 第二步: 点击安装 我这里选择安装8版本 第三步:给宝塔配置mysql防火墙 第四步:修改数据库密码 第五步:想要使用navicat连接 需要修改root的权限 (1)使用secureCRT先登录mysql (2) 输入u…

Sentinel限流、熔断

1、限流 单个服务节点限流 sentinel 提供了两种不同的隔离机制:信号量隔离和线程池隔离,它们的主要区别如下: 信号量隔离(Semaphore Isolation): 原理:信号量隔离基于计数器(或称令…

电池均衡管理

一、前言 在电芯批量生产过程中,由于原料及生产工艺的波动,电芯的容量、内阻、电压及自放电率均会有一定的偏差,同时在电芯使用过程中随着充放电循环次数增加及存储时间、温度等影响,电芯容量衰减也会出现不一致,导致在…

有趣可操控的无人机足球大赛首次亮相,CES2024上的那些黑科技(二)

今年的CES2024(国际消费电子展)可谓是黑科技的盛宴,前天我们分享了5个有意思的产品,今天继续带来5个,一同探寻那些令人兴奋的黑科技,让我们的未来更加有趣和智能。 1400元巴掌大小AI硬件,首日卖…

STM32之OLED显示

一、模块介绍 1、常见的显示设备 LED、数码管、点阵、LCD屏(1602/12864)、OLED屏(消费电子) 2、OLED屏的概述 OLED,即有机发光二极管(Organic Light-Emitting Diode),又称为有机电激光显示(Organic Electroluminesenc…

4、C语言:指针与数组

数组与指针 指针与地址指针与函数参数指针与数组地址算数运算字符指针与函数指针数组以及指向指针的指针多维数组命令行参数指向函数的指针复杂声明 指针是一种保存变量地址的变量。C语言中,指针的使用非常广泛,原因之一是,指针常常是表达某个…

IaC基础设施即代码:使用Terraform 连接 alicloud阿里云

目录 一、实验 1.环境 2.alicloud阿里云创建用户 3.Linux使用Terraform 连接 alicloud 4.Windows使用Terraform 连接 alicloud 二、问题 1.Windows如何申明RAM 相关变量 2.Linux如何申明RAM 相关变量 3. Linux terraform 初始化失败 4.Linux terraform 计划与预览失败…