最小二乘法简介

news2025/5/25 23:14:57

最小二乘法简介

    • 1、背景描述
    • 2、最小二乘法
      • 2.1、最小二乘准则
      • 2.2、最小二乘法
    • 3、最小二乘法与线性回归
      • 3.1、最小二乘法与线性回归
      • 3.2、最小二乘法与最大似然估计
    • 4、正态分布(高斯分布)



1、背景描述


在工程应用中,我们通常会用一组观测数据去估计模型的参数,模型是我们根据经验知识预先给定的。例如,我们有一组观测数据 ( x i , y i ) (x_i,y_i) (xi,yi),通过简单分析,我们猜测y与x之间存在线性关系,那么我们的模型可以给定为:
y = k x + b y=kx+b y=kx+b

该模型只有两个参数,理论上,我们只需要通过两组观测值建立二元一次方程组即可求解。类似的,如果模型有n个参数,我们只需要n组观测值即可求解。换句话说,这种情况下,模型的参数是唯一确定解

但是,在实际应用中,由于我们的观测会存在误差(偶然误差、系统误差等),所以我们总会做更多观测。例如,在上述例子中,尽管只有两个参数,但是我们可能会观测n组数据: ( x 0 , y 0 ) 、 ( x 1 , y 1 ) 、 . . . 、 ( x n − 1 , y n − 1 ) (x_0,y_0)、(x_1,y_1)、...、(x_{n-1},y_{n-1}) (x0,y0)(x1,y1)...(xn1,yn1),这会导致我们无法找到一条直线经过所有的点,也就是说,方程无确定解
在这里插入图片描述

于是,这就是我们要解决的问题:虽然没有确定解,但是我们能不能求出近似解,使得模型能在各个观测点上达到“最佳“拟合

那么“最佳”的准则是什么?可以是所有观测点到直线的距离和最小,也可以是所有观测点到直线预测点(真实值-理论值)的绝对值和最小,还可以是所有观测点到直线预测点(真实值-理论值)的平方和最小

在这里插入图片描述

2、最小二乘法

2.1、最小二乘准则


19世纪初(1806年),法国科学家勒让德发明了“最小二乘法”。勒让德认为,让误差(真实值-理论值)的平方和最小估计出来的模型是最接近真实情形的。换句话说,勒让德认为最佳的拟合准则是使 y i y_i yi y = f ( x i ) y=f(x_i) y=f(xi)的距离的平方和最小:
L = ∑ i = 1 m ( y i − f ( x i ) ) 2 L=\sum_{i=1}^m(y_i-f(x_i))^2 L=i=1m(yif(xi))2

这个准则也被称为最小二乘准则。这个目标函数取得最小值时的函数参数,就是最小二乘法的思想,所谓“二乘”就是平方的意思

勒让德在原文中提到:使误差平方和达到最小,在各方程的误差之间建立了一种平衡,从而防止了某一极端误差取得支配地位,而这有助于揭示系统的更接近真实的状态

至于为什么最佳准则就是误差平方而不是其它的,勒让德当时并没有给出解释,直到后来高斯建立了正态误差分析理论才成功回答了该问题

在这里插入图片描述

1829年,高斯建立了一套误差分析理论,从而证明了确实是使误差(真实值-理论值)平方和最小的情况下系统是最优的

误差分析理论其实说到底就一个结论:观察值的误差服从标准正态分布,即 ϵ ∈ N ( 0 , 1 ) ϵ∈N(0,1) ϵN(0,1)

关于正态分布的介绍见本文第4节

2.2、最小二乘法


最小二乘法就是一个数学公式,在数学上称为曲线拟合,不仅包括线性回归方程,还包括矩阵的最小二乘法

最小二乘法是解决曲线拟合问题最常用的方法。令

在这里插入图片描述

其中, φ k ( x ) \varphi_k(x) φk(x)是事先选定的一组线性无关的函数, a k a_k ak是待定系数 ( k = 1 , 2 , . . . , m , m < n ) (k=1,2,...,m,m<n) (k=1,2,...,m,m<n),拟合准则是使 y i ( i = 1 , 2 , . . . , n ) y_i(i=1,2,...,n) yi(i=1,2,...,n) f ( x i ) f(x_i) f(xi)的距离 δ i \delta_i δi的平方和最小,称为最小二乘准则

百度百科词条给出的基本原理如下:

在这里插入图片描述

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和最小

最小二乘法是一种在误差估计、不确定度、系统辨识及预测、预报等数据处理诸多学科领域得到广泛应用的数学工具

3、最小二乘法与线性回归

3.1、最小二乘法与线性回归


对于勒让德给定的最佳拟合准则,我们可以看到,最小二乘法其实就是用来做函数拟合的一种思想。至于如何求解具体的参数那就是另外一个问题了

最小二乘法的本质是一种数学思想,它可以拟合任意函数。而线性回归只是其中一个比较简单且常用的函数,所以讲最小二乘法基本都会以线性回归为例

线性回归因为比较简单,可以直接推导出解析解,而且许多非线性的问题也可以转化为线性问题来解决,所以得到了广泛的应用

线性回归简介见文章:传送门

3.2、最小二乘法与最大似然估计


最大似然估计:最大化给定样本集发生的概率,即就是极大化似然函数(Likelihood Function),而似然函数就是样本的联合概率。由于我们通常都会假设样本是相互独立的,因此联合概率就等于每个样本发生的概率乘积

假设我们有m组观测数据 ( x 1 , y 1 ) , . . . , ( x m , y m ) (x_1,y_1),...,(x_m,y_m) (x1,y1),...,(xm,ym),我们猜测其关系符合:
y = k x + b y=kx+b y=kx+b
假设真实值与预测值之间的误差为:
ε i = y i − y = y i − f ( x i ) \varepsilon_i=y_i-y=y_i-f(x_i) εi=yiy=yif(xi)
根据高斯的误差分析理论,观测值的误差服从标准正态分布(见文末),即给定一个 x i x_i xi,模型输出真实值 y i y_i yi的概率为:
p ( y i ∣ x i ) = 1 2 π e − ε i 2 2 p(y_i|x_i)=\frac{1}{\sqrt{2\pi}}e^{-\frac{\varepsilon_i^2}{2}} p(yixi)=2π 1e2εi2

则根据最大似然估计(似然函数)有:
L ( ω ) = ∏ i = 1 m p ( y i ∣ x i ) = ∏ i = 1 m 1 2 π e − ε i 2 2 L(\omega)=\prod_{i=1}^mp(y_i|x_i)=\prod_{i=1}^m\frac{1}{\sqrt{2\pi}}e^{-\frac{\varepsilon_i^2}{2}} L(ω)=i=1mp(yixi)=i=1m2π 1e2εi2

两边取对数得:
J ( ω ) = l n ( L ( ω ) ) = ∑ i = 1 m l n ( 1 2 π e − ε i 2 2 ) = ∑ i = 1 m l n 1 2 π − 1 2 ∑ i = 1 m ε i 2 J(\omega)=ln(L(\omega)) = \sum_{i=1}^mln(\frac{1}{\sqrt{2\pi}}e^{-\frac{\varepsilon_i^2}{2}}) = \sum_{i=1}^mln\frac{1}{\sqrt{2\pi}}-\frac{1}{2}\sum_{i=1}^m\varepsilon_i^2 J(ω)=ln(L(ω))=i=1mln(2π 1e2εi2)=i=1mln2π 121i=1mεi2

去掉无关常数项得:
J ( ω ) = l n ( L ( ω ) ) = − 1 2 ∑ i = 1 m ε i 2 = − 1 2 ∑ i = 1 m ( y i − f ( x i ) ) 2 J(\omega)=ln(L(\omega))=-\frac{1}{2}\sum_{i=1}^m\varepsilon_i^2=-\frac{1}{2}\sum_{i=1}^m(y_i-f(x_i))^2 J(ω)=ln(L(ω))=21i=1mεi2=21i=1m(yif(xi))2

要使 L ( ω ) L(\omega) L(ω)(概率)最大,即 J ( ω ) J(\omega) J(ω)最大,则使下面多项式结果最小即可:
∑ i = 1 m ( y i − f ( x i ) ) 2 \sum_{i=1}^m(y_i-f(x_i))^2 i=1m(yif(xi))2

上述结果表明:最大似然估计(似然函数)等价于最小二乘法,这也表明了以误差平方和作为最佳拟合准则的合理性

因此我们可以说,最小二乘法其实就是误差满足正态(高斯)分布的极大似然估计,最小化误差平方本质上等同于在误差服从正态(高斯)分布的假设下的最大似然估计

4、正态分布(高斯分布)


正态分布(Normal Distribution),也称高斯分布(Gaussian Distribution),其曲线呈钟型,两头低,中间高,左右对称,因此也被称为钟形曲线

定义:若连续型随机变量x有如下形式的密度函数:

在这里插入图片描述
则称x服从参数为 ( μ , σ 2 ) (\mu,\sigma^2) (μ,σ2)的正态分布(Normal Distribution),记为 X − N ( μ , σ 2 ) X-N(\mu,\sigma^2) XN(μ,σ2)

在这里插入图片描述

性质

  • 关于 x = μ x=μ x=μ 对称,在 x = μ x=μ x=μ 处达到最大值 1 2 π σ \frac{1}{\sqrt{2\pi}\sigma} 2π σ1,越远离 μ μ μ,密度函数值越小
  • 数学期望(均值)为 μ μ μ,标准差为 σ \sigma σ,方差为 σ 2 \sigma^2 σ2

标准正态分布:又称 μ μ μ分布,是以0为均值(数学期望)、以1为标准差的正态分布,记为 X − N ( 0 , 1 ) X-N(0,1) XN(0,1),密度函数:

在这里插入图片描述



参考文章:
https://blog.csdn.net/MoreAction_/article/details/106443383
https://blog.csdn.net/MoreAction_/article/details/121591653
https://blog.csdn.net/qq_46092061/article/details/119136137

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331394.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(Mac上)使用Python进行matplotlib 画图时,中文显示不出来

【问题描述】 ①报错确缺失字体&#xff1a; ②使用matplotlib画图&#xff0c;中文字体显示不出来 【问题思考】 在网上搜了好多&#xff0c;关于使用python进行matplotlib画图字体显示不出来的&#xff0c;但是我试用了下&#xff0c;对我来说都没有。有些仅使用于windows系…

中心性算法归纳

中心性算法不仅是在我所学习的计算机网络当中起很重要的作用&#xff0c;在交通网络、社交网络、信息网络、神经网络当中也有很多的应用例子。今天我在这里总结一下场景的几种中心性算法。 参考文献 Python NetworkX库 偏心中心性&#xff08;Eccentricity Centrality&#x…

在Linux下探索MinIO存储服务如何远程上传文件

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;网络奇遇记、Cpolar杂谈 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. 创建Buckets和Access Keys二. Linux 安装Cpolar三. 创建连接MinIO服务公网地…

python时间处理方法和模块

在 Python 中&#xff0c;有一些内置的模块和库&#xff0c;可以帮助我们处理日期和时间的表示、计算和转换。 1. 时间模块&#xff08;time&#xff09; Python 的 time 模块提供了一系列函数来处理时间相关的操作。通过这个模块&#xff0c;可以获取当前时间、睡眠指定时间…

BIT-6-指针(C语言初阶学习)

1. 指针是什么 2. 指针和指针类型 3. 野指针 4. 指针运算 5. 指针和数组 6. 二级指针 7. 指针数组 1. 指针是什么&#xff1f; 指针是什么&#xff1f; 指针理解的2个要点&#xff1a; 指针是内存中一个最小单元的编号&#xff0c;也就是地址平时口语中说的指针&#xff0c;通常…

向量投影:如何将一个向量投影到矩阵的行向量生成子空间?

向量投影&#xff1a;如何将一个向量投影到矩阵的行向量生成子空间&#xff1f; 前言 本问题是在学习Rosen梯度投影优化方法的时候遇到的问题&#xff0c;主要是对于正交投影矩阵(NT(NNT)-1N)的不理解&#xff0c;因此经过查阅资料&#xff0c;学习了关于向量投影的知识&…

MySQL——复合查询

目录 一.基本查询回顾 二. 多表查询 三.自连接 四.子查询 1.单行子查询 2.多行子查询 3.多列子查询 4.在from子句中使用子查询 5.合并查询 一.基本查询回顾 准备数据库&#xff1a; 查询工资高于500或岗位为MANAGER的雇员&#xff0c;同时还要满足他们的姓名首字母为…

欠采样对二维相位展开的影响

1.前言 如前所述&#xff0c;相位展开器通过计算两个连续样本之间的差来检测图像中包裹的存在。如果这个差值大于π或小于-π&#xff0c;则相位展开器认为在这个位置存在包裹。这可能是真正的相位包络&#xff0c;也可能是由噪声或采样不足引起的伪包络。 对欠采样的相位图像…

Flink面试题与详解

Flink面试题目合集 从牛客网上找到的一些面试题&#xff0c;如果还有其他的&#xff0c;欢迎大家补充。 1、能否详细描述下Apache Flink的架构组件和其工作原理&#xff1f;请介绍一下Flink on YARN部署模式的工作原理。 官网图&#xff1a; 由两个部分组成&#xff0c;JM&am…

使用Velero备份、恢复k8s集群上的资源

一、Velero简介 Velero提供备份和恢复 Kubernetes 集群资源和持久卷的工具。 Velero功能&#xff1a; 对群集进行备份&#xff0c;并在丢失时进行还原。将集群资源迁移到其他集群。 Velero 包括&#xff1a; 在群集上运行的服务器在本地运行的命令行客户端 开源地址&…

CAD制图

CAD制图 二维到三维 文章目录 CAD制图前言一、CAD制图二、机械设计三、二维图纸四、三维图纸总结前言 CAD制图可以提高设计效率和准确性,并方便文档的存档和交流,是现代工程设计中不可或缺的一部分。 一、CAD制图 CAD(Computer-Aided Design)是利用计算机技术辅助进行设计…

DoIP学习笔记系列:(七)doipclient测试工具安装使用说明

文章目录 优点doipclient简介安装部署环境准备安装doipclient安装python-uds测试传送门 DoIP学习笔记系列:导航篇 在DoIP的开发测试过程中,一般是用CANoe+VN5620+cdd的方式测试,此种方式对熟悉CANoe使用的小伙伴非常友好,调试方便,稳定性也不错,那有没有其他的方式呢?比…

ubuntu保存分辨率失效解决办法

在VM虚拟机中&#xff0c;遇到修改ubuntu分辨率后&#xff0c;重启后又重置的解决办法。 目前我的ubuntu版本是&#xff1a;ubuntu 18.04.6 版本。 1.首先&#xff0c;在你喜欢的目录建立一个.sh 脚本文件。 终端执行命令&#xff1a;sudo vim xrandr.sh 2.按 i 进入编辑状…

ARM 点灯

.text .global _start _start: led1设置GPIOE时钟使能 RCC_MP_AHB4ENSETR[4]->1 0X50000A28LDR R0,0X50000A28 指定寄存器地址LDR R1,[R0] 将寄存器数值取出来放在R1中ORR R1,R1,#(0x1<<4) 将第4位设置为1STR R1,[R0] 将修改后的值写回去设置PE10为输出 GPIOE…

Prometheus API 使用介绍|收藏

​ &#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试…

Microsoft edge浏览器对比谷歌浏览器 edge浏览器好用吗 edge浏览器怎么更换主页

近年来&#xff0c;由于谷歌浏览器的垄断&#xff0c;许多人都已经习惯于使用谷歌浏览器。随着互联网的普及&#xff0c;浏览器成为了人们上网必备的工具之一。而近年来&#xff0c;微软公司推出的 Microsoft Edge 浏览器备受关注。那么&#xff0c;Microsoft Edge 浏览器真的好…

2. 结构型模式 - 桥接模式

亦称&#xff1a; Bridge 意图 桥接模式是一种结构型设计模式&#xff0c; 可将一个大类或一系列紧密相关的类拆分为抽象和实现两个独立的层次结构&#xff0c; 从而能在开发时分别使用 问题 抽象&#xff1f; 实现&#xff1f; 听上去挺吓人&#xff1f; 让我们慢慢来&#x…

PyQt5设计一个简单的抽奖系统

PyQt5抽奖系统 程序运行截图 抽奖系统代码 该系统使用PyQt5模块以及openpyxl模块开发&#xff0c;需要使用pip安装导入PyQt5模块和openpyxl模块 import random, sys from PyQt5.QtWidgets import QWidget, QFormLayout, QLineEdit, QVBoxLayout, QApplication, QPushButton,…

2023年Top5搭建帮助中心工具集锦

随着企业知识管理的不断深化&#xff0c;帮助中心成为了一个越来越重要的组成部分。帮助中心是一个集成了企业知识、FAQ、常见问题解答、教程、使用指南等内容的在线平台&#xff0c;旨在为用户提供快速、准确的问题解答和自助服务。那么在这一年&#xff0c;有哪些搭建帮助中心…

汽车级EEPROM 存储器 M24C64-DRMN3TP/K是电可擦除可编程只读存储器?它的功能特性有哪些?

M24C64-DRMN3TP/K是一款64 Kbit串行EEPROM汽车级设备&#xff0c;工作温度高达125C。符合汽车标准AEC-Q100 1级规定的极高可靠性。 该设备可通过一个高达1MHz的简单串行I2C兼容接口访问。 存储器阵列基于先进的真EEPROM技术&#xff08;电可擦除可编程存储器&#xff09;。M2…