⭐️⭐️⭐️ 模拟题及答案 ⭐️⭐️⭐️ 大模型Clouder认证:RAG应用构建及优化

news2025/6/1 10:34:24

考试注意事项:
请添加图片描述

一、单选题(21题)

  1. 检索增强生成(RAG)的核心技术结合了什么?
    A. 图像识别与自然语言处理
    B. 信息检索与文本生成
    C. 语音识别与知识图谱
    D. 数据挖掘与机器学习

  2. RAG技术中,“建立索引”步骤不包括以下哪项操作?
    A. 将文档解析为纯文本
    B. 文本片段分割(chunk)
    C. 生成提示词模板
    D. 文本片段转换为向量数据

  3. 下列哪项是RAG技术相比传统生成模型的主要优势?
    A. 减少对预训练模型的依赖
    B. 实时更新外部知识库信息
    C. 降低模型训练成本
    D. 提升图像生成质量

  4. RAG技术通过什么机制减少“幻觉”现象?
    A. 随机生成内容补充
    B. 依赖预训练模型内部知识
    C. 引入外部知识库检索
    D. 增加模型参数规模

  5. 在RAG的实现原理中,“检索生成”步骤的关键操作是?
    A. 计算用户问题与文档块的相似度
    B. 重新训练大模型参数
    C. 清洗原始数据格式
    D. 构建知识图谱结构

  6. 下列哪项属于RAG技术在垂直领域的应用场景?
    A. 社交媒体情感分析
    B. 企业内部定制化问答系统
    C. 视频推荐算法优化<

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2392439.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

kali系统的安装及配置

1 kali下载 Kali 下载地址&#xff1a;Get Kali | Kali Linux &#xff08;https://www.kali.org/get-kali&#xff09; 下载 kali-linux-2024.4-installer-amd64.iso (http://cdimage.kali.org/kali-2024.4/) 2. 具体安装步骤&#xff1a; 2.1 进入官方地址&#xff0c;点击…

Redis的大Key问题如何解决?

大家好&#xff0c;我是锋哥。今天分享关于【Redis的大Key问题如何解决&#xff1f;】面试题。希望对大家有帮助&#xff1b; Redis的大Key问题如何解决&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Redis中的“大Key”问题是指某个键的值占用了过多…

影楼精修-AI追色算法解析

注意&#xff1a;本文样例图片为了避免侵权&#xff0c;均使用AIGC生成&#xff1b; AI追色是像素蛋糕软件中比较受欢迎的一个功能点&#xff0c;本文将针对AI追色来解析一下大概的技术原理。 功能分析 AI追色实际上可以理解为颜色迁移的一种变体或者叫做升级版&#xff0c;…

node入门:安装和npm使用

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、安装npm命令nvm 前言 因为学习vue接触的&#xff0c;一直以为node是和vue绑定的&#xff0c;还以为vue跑起来必须要node&#xff0c;后续发现并不是。 看…

java虚拟机2

一、垃圾回收机制&#xff08;GC&#xff09; 1. 回收区域&#xff1a;GC主要回收堆内存区域。堆用于存放new出来的对象 。程序计数器、元数据区和栈一般不是GC回收的重点区域。 2. 回收单位&#xff1a;GC以对象为单位回收内存&#xff0c;而非字节。按对象维度回收更简便&am…

Pydantic 学习与使用

Pydantic 学习与使用 在 Fastapi 的 Web 开发中的数据验证通常都是在使用 Pydantic 来进行数据的校验&#xff0c;本文将对 Pydantic 的使用方法做记录与学习。 **简介&#xff1a;**Pydantic 是一个在 Python 中用于数据验证和解析的第三方库&#xff0c;它现在是 Python 使…

PCB设计教程【入门篇】——电路分析基础-基本元件(二极管三极管场效应管)

前言 本教程基于B站Expert电子实验室的PCB设计教学的整理&#xff0c;为个人学习记录&#xff0c;旨在帮助PCB设计新手入门。所有内容仅作学习交流使用&#xff0c;无任何商业目的。若涉及侵权&#xff0c;请随时联系&#xff0c;将会立即处理、 目录 前言 1.二极管 1.发光…

能按需拆分 PDF 为多个文档的工具

软件介绍 彩凤 PDF 拆分精灵是一款具备 PDF 拆分功能的软件。 功能特点 PDF 拆分功能较为常见&#xff0c;很多 PDF 软件都具备&#xff0c;例如 DC 软件提取 PDF 较为方便&#xff0c;但它不能从一个 PDF 里提取出多个 PDF。据印象&#xff0c;其他 PDF 软件也似乎没有能从…

Apifox 5 月产品更新|数据模型支持查看「引用资源」、调试 AI 接口可实时预览 Markdown、性能优化

Apifox 新版本上线啦&#xff01; 看看本次版本更新主要涵盖的重点内容&#xff0c;有没有你所关注的功能特性&#xff1a; 自动解析 JSON 参数名和参数值调试 AI 接口时&#xff0c;可预览 Markdown 格式的内容性能优化&#xff1a;新增「实验性功能」选项 使用独立进程执行…

LiveGBS海康、大华、宇视、华为摄像头GB28181国标语音对讲及语音喊话:摄像头设备与服务HTTPS准备

LiveGBS海康、大华、宇视、华为摄像头GB28181国标语音对讲及语音喊话&#xff1a;摄像头设备与服务HTTPS准备 1、背景2、准备工作2.1、服务端必备条件&#xff08;注意事项&#xff09;2.2、语音对讲设备准备2.2.1、大华摄像机2.2.2、海康摄像机 3、开启音频并开始对讲4、相关问…

Sqlalchemy 连mssql坑

连接失败: (pyodbc.OperationalError) (08001, [08001] [Microsoft][ODBC Driver 17 for SQL Server]SSL Provider: [error:0A00014D:SSL routines::legacy sigalg disallowed or unsupported] (-1) (SQLDriverConnect)) (Background on this error at: https://sqlalche.me/e/…

LLaMaFactory - 支持的模型和模板 常用命令

一、 环境准备 激活LLaMaFactory环境&#xff0c;进入LLaMaFactory目录 cd LLaMA-Factoryconda activate llamafactory 下载模型 #模型下载 from modelscope import snapshot_download model_dir snapshot_download(Qwen/Qwen2.5-0.5B-Instruct) 二、启动一个 Qwen3-0.6B…

大模型深度学习之双塔模型

前言 双塔模型&#xff08;Two-Tower Model&#xff09;是一种在推荐系统、信息检索和自然语言处理等领域广泛应用的深度学习架构。其核心思想是通过两个独立的神经网络&#xff08;用户塔和物品塔&#xff09;分别处理用户和物品的特征&#xff0c;并在共享的语义空间中通过相…

瑞数6代jsvmp简单分析(天津电子税x局)

国际惯例 今天帮朋友看一个gov网站的瑞数加密&#xff08;天津电子税x局&#xff09; 传送门&#xff08;登陆入口界面&#xff09; 瑞数6特征 1.服务器会发两次包&#xff0c;第一次响应状态码为412&#xff0c;第二次响应状态码为200。 2.有三重debugger&#xff0c;其中有…

榕壹云物品回收系统实战案例:基于ThinkPHP+MySQL+UniApp的二手物品回收小程序开发与优化

摘要&#xff1a;本文深入解析了一款基于ThinkPHPMySQLUniApp框架开发的二手物品回收小程序——榕壹云物品回收系统的技术实现与商业价值。通过剖析项目背景、核心技术架构、功能特性及系统优势&#xff0c;为开发者与潜在客户提供全面的参考指南&#xff0c;助力资源循环利用与…

《软件工程》第 9 章 - 软件详细设计

目录 9.1 详细设计的任务与过程模型 9.2 用例设计 9.2.1 设计用例实现方案 9.2.2 构造设计类图 9.2.3 整合并优化用例实现方案 9.3 子系统设计 9.3.1 确立内部设计元素 9.3.2 导出设计类图 9.4 构件设计 9.5 类设计 9.5.1 精化类间关系 9.5.2 精化属性和操作 9.5.…

WebVm:无需安装,一款可以在浏览器运行的 Linux 来了

WebVM 是一款可以在浏览器中运行的Linux虚拟机。不是那种HTMLJavaScript模拟的UI&#xff0c;完全通过HTML5/WebAssembly技术实现客户端运行。通过集成CheerpX虚拟化引擎&#xff0c;可直接在浏览器中运行未经修改的Debian系统。 Stars 数13054Forks 数2398 主要特点 完整 Lin…

王树森推荐系统公开课 排序06:粗排模型

shared bottom 表示神经网络被所有特征共享。精排模型主要开销在神经网络&#xff0c;神经网络很大且很复杂。 每做一次推荐&#xff0c;用户塔只做一次推理。物品塔存放入向量数据库。 后期融合模型常用于召回&#xff0c;前期融合模型常用于精排。 物品塔短时间内比较稳…

PH热榜 | 2025-05-29

1. Tapflow 2.0 标语&#xff1a;将你的文档转化为可销售的指导手册、操作手册和工作流程。 介绍&#xff1a;Tapflow 2.0将各类知识&#xff08;包括人工智能、设计、开发、营销等&#xff09;转化为有条理且可销售的产品。现在你可以导入文件&#xff0c;让人工智能快速为你…

【Node.js】部署与运维

个人主页&#xff1a;Guiat 归属专栏&#xff1a;node.js 文章目录 1. Node.js 部署概述1.1 部署的核心要素1.2 Node.js 部署架构全景 2. 传统服务器部署2.1 Linux 服务器环境准备系统更新与基础软件安装创建应用用户 2.2 应用部署脚本2.3 环境变量管理2.4 Nginx 反向代理配置2…