基于蜜獾优化的BP神经网络(分类应用) - 附代码

news2025/7/17 19:11:09

基于蜜獾优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于蜜獾优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.蜜獾优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 蜜獾算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用蜜獾算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.蜜獾优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 蜜獾算法应用

蜜獾算法原理请参考:https://blog.csdn.net/u011835903/article/details/122236413

蜜獾算法的参数设置为:

popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从蜜獾算法的收敛曲线可以看到,整体误差是不断下降的,说明蜜獾算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1102856.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL双主一从高可用

MySQL双主一从高可用 文章目录 MySQL双主一从高可用环境说明1.配置前的准备工作2.配置yum源 1.在部署NFS服务2.安装主数据库的数据库服务,并挂载nfs3.初始化数据库4.配置两台master主机数据库5.配置m1和m2成为主数据库6.安装、配置keepalived7.安装部署从数据库8.测…

leetcode-200. 岛屿数量

1. 题目 leetcode题目链接 2. 解答 思路: 需要循环遍历每个节点;找到陆地,基于陆地开始遍历陆地的上下左右;数组dirm dirn就可以表示某个区域的上下左右;标记遍历过的节点;设计循环的退出条件&#xf…

Kotlin中的比较运算符

在Kotlin中,我们可以使用比较运算符进行值的比较和判断。下面对Kotlin中的等于、不等于、小于、大于、小于等于和大于等于进行详细介绍,并提供示例代码。 等于运算符(): 等于运算符用于判断两个值是否相等。如果两个值…

XMLHttpRequest的readyState状态值

readyState状态值 功能:在Ajax请求与服务器响应中,是通过XMLHttpRequest对象完成。而readyState状态值则是记录XMLHttpRequest对象在这个过程进行变化的状态。 readyState状态值readyState分别有5个状态值 0:请求未初始化:在未点击…

微信小程序--数字化会议OA系统之首页搭建

一、Flex弹性布局 布局的传统解决方案,基于盒状模型,依赖 display属性 position属性 float属性。它对于那些特殊布局非常不方便,比如,垂直居中就不容易实现。 2009年,W3C提出了一种新的方案—-Flex布局,可…

python 运算符的优先级:先算乘除,后算加减,有括号的先算括号里面的。

运算符的优先级 什么是运算符的优先级?其实我们小学就已经接触过了,就是在一个表达式中,我们先算谁的问题。 先算乘除,后算加减,有括号的先算括号里面的。 个人建议: ① 不要把一个表达式****写得过于复杂…

【Java基础面试十五】、 说一说你对多态的理解

文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享? 踩过的坑没必要让别人在再踩,自己复盘也能加深记忆。利己利人、所谓双赢。 面试官:说一说你对多态的理解 …

【Java基础面试十四】、 封装的目的是什么,为什么要有封装?

文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享? 踩过的坑没必要让别人在再踩,自己复盘也能加深记忆。利己利人、所谓双赢。 面试官: 封装的目的是什么&…

MySQL事务MVCC详解

一、概述 MVCC (MultiVersion Concurrency Control) 叫做多版本并发控制机制。主要是通过数据多版本来实现读-写分离,做到即使有读写冲突时,也能做到不加锁,非阻塞并发读,从而提高数据库并发性能。 MVCC只在已提交读&#xff08…

CCF CSP认证 历年题目自练Day34

题目一 试题编号: 202303-1 试题名称: 田地丈量 时间限制: 1.0s 内存限制: 512.0MB 问题描述: 问题描述 西西艾弗岛上散落着 n 块田地。每块田地可视为平面直角坐标系下的一块矩形区域,由左下角坐标 (x1,…

KNN-近邻算法 及 模型的选择与调优(facebook签到地点预测)

什么是K-近邻算法(K Nearest Neighbors) 1、K-近邻算法(KNN) 1.1 定义 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 来源:KNN算法最早是由Cover和Hart提…

【网络协议】聊聊从物理层到MAC层 ARP 交换机

物理层 物理层其实就是电脑、交换器、路由器、光纤等。组成一个局域网的方式可以使用集线器。可以将多台电脑连接起来,然后进行将数据转发给别的端口。 数据链路层 Hub其实就是广播模式,如果A电脑发出一个包,B、C电脑也可以收到。那么数据…

zk的二阶段提交图解

第一阶段:每次的数据写入事件作为提案广播给所有Follower结点;可以写入的结点返回确认信息ACK;第二阶段:Leader收到一半以上的ACK信息后确认写入可以生效,向所有结点广播COMMIT将提案生效。

Unity 实现一个FPS游戏的全过程

Unity是一款功能强大的游戏引擎,它提供了各种各样的工具和功能,以帮助开发者轻松地创建精美的3D游戏和应用程序。在本文中,我们将使用Unity实现一个FPS游戏的全过程,从场景设计、角色控制、敌人AI到最终的打包发布。 对啦&#x…

开源项目汇总

element-plus 人人开源 人人开源 多租户 若依 jeecg https://gitee.com/jeecg/jeecg?_fromgitee_search#https://gitee.com/link?targethttp%3A%2F%2Fidoc.jeecg.com jeeplus JeePlus快速开发平台 j2eefast Sa-Plus

地震勘探原理部分问题解答

1、二维/三维(陆地/海洋)地震勘探,炮点(激发点)和检波点(接收点)的排布位置如何?画图作答? (1)陆地地震勘探 二维陆地地震野外采集:震…

过滤器(Filter)和拦截器(Interceptor)有什么不同?

过滤器(Filter)和拦截器(Interceptor)是用于处理请求和响应的中间件组件,但它们在实现方式和应用场景上有一些不同。 实现方式: 过滤器是Servlet规范中定义的一种组件,通常以Java类的形式实现。过滤器通过在…

Python文件共享+cpolar内网穿透:轻松实现公网访问

文章目录 1.前言2.本地文件服务器搭建2.1.Python的安装和设置2.2.cpolar的安装和注册 3.本地文件服务器的发布3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 数据共享作为和连接作为互联网的基础应用,不仅在商业和办公场景有广泛的应用&#…

yolov7改进优化之蒸馏(一)

最近比较忙,有一段时间没更新了,最近yolov7用的比较多,总结一下。上一篇yolov5及yolov7实战之剪枝_CodingInCV的博客-CSDN博客 我们讲了通过剪枝来裁剪我们的模型,达到在精度损失不大的情况下,提高模型速度的目的。上一…

6.6 图的应用

思维导图: 6.6.1 最小生成树 ### 6.6 图的应用 #### 主旨:图的概念可应用于现实生活中的许多问题,如网络构建、路径查询、任务排序等。 --- #### 6.6.1 最小生成树 **概念**:要在n个城市中建立通信联络网,则最少需…