Python合并多个相交矩形框

news2025/7/19 16:53:01

Python合并多个相交矩形框

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • Python合并多个相交矩形框
    • 代码实现

在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。

实验环境

  • Python 3.x (面向对象的高级语言)

Python合并多个相交矩形框

在这里插入图片描述

代码实现

在这里插入图片描述

import cv2
import numpy as np


def xyxy2xywh(rect):
    '''
    (x1,y1,x2,y2) -> (x,y,w,h)
    '''
    return [rect[0],rect[1],rect[2]-rect[0],rect[3]-rect[1]]

def xywh2xyxy(rect):
    '''
    (x,y,w,h) -> (x1,y1,x2,y2)
    '''
    return [rect[0],rect[1],rect[0]+rect[2],rect[1]+rect[3]]


def is_RecA_RecB_interSect(RecA, RecB): # Rec = [xmin,ymin,xmax,ymax]
    # 获取交集区域的[xmin,ymin,xmax,ymax]
    x_A_and_B_min = max(RecA[0], RecB[0])
    y_A_and_B_min = max(RecA[1], RecB[1])
    x_A_and_B_max = min(RecA[2], RecB[2])
    y_A_and_B_max = min(RecA[3], RecB[3])
    # 计算交集部分面积, 当(xmax - xmin)为负时,说明A与B框无交集,直接置为0。 (ymax - ymin)同理。
    interArea = max(0, x_A_and_B_max - x_A_and_B_min) * max(0, y_A_and_B_max - y_A_and_B_min)
    return interArea > 0

def merge_RecA_RecB(RecA, RecB): # Rec = [xmin,ymin,xmax,ymax]
    # 获取合并区域的[xmin,ymin,xmax,ymax]
    xmin = min(RecA[0], RecB[0])
    ymin = min(RecA[1], RecB[1])
    xmax = max(RecA[2], RecB[2])
    ymax = max(RecA[3], RecB[3])
    return [xmin,ymin, xmax,ymax]

# def merge_rect(box,box_len):
#     if  box_len== 1:
#         return box

#     for i in range(box_len):
#         RecA_xywh = box[i]
#         RecA_xyxy = xywh2xyxy(RecA_xywh)
#         for j in range(i+1,box_len):
#             RecB_xywh = box[j]
#             RecB_xyxy = xywh2xyxy(RecB_xywh)
#             print(is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy))
#             if is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy):
#                 rect_xyxy = merge_RecA_RecB(RecA_xyxy, RecB_xyxy)
#                 rect_xywh = xyxy2xywh(rect_xyxy)
#                 box.remove(RecA_xywh)
#                 box.remove(RecB_xywh)
#                 box.append(rect_xywh)
#                 box_len = len(box)
#                 merge_rect(box,box_len)
#                 # 此处少了return box会报错
#     return box


# def merge_rect(box, box_len):
    
#     if box_len == 1:
#         return box

#     for i in range(box_len):
#         RecA_xywh = box[i]
#         RecA_xyxy = xywh2xyxy(RecA_xywh)
#         for j in range(i+1, box_len):
#             RecB_xywh = box[j]
#             RecB_xyxy = xywh2xyxy(RecB_xywh)
#             if is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy):
#                 rect_xyxy = merge_RecA_RecB(RecA_xyxy, RecB_xyxy)
#                 rect_xywh = xyxy2xywh(rect_xyxy)
#                 # 使用remove(elem)来移除元素
#                 box.remove(RecA_xywh)
#                 box.remove(RecB_xywh)

#                 box.append(rect_xywh)
#                 box_len = len(box)
#                 merge_rect(box, box_len)
#                 # 返回上一级循环,避免重复处理已合并的矩形
#                 return box
#     return box



'''
递归是一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,
它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。
因此递归过程,最重要的就是查看能不能讲原本的问题分解为更小的子问题,这是使用递归的关键。


    终止条件:矩形框数为1或者为空。
    返回值: 新合并的矩形框
    本级任务: 每一级需要做的就是遍历从它开始的后续矩形框,寻找可以和他合并的矩形

'''
def merge_rect(box):
    '''
    合并重叠框 

    输入参数: box :[[x,y,w,h],...]

    返回:
        合并后的box:[[x,y,w,h],...]
    '''
    if len(box) == 1 or len(box) == 0 : # 矩形框数为1或者为空
        return box

    for i in range(len(box)):
        RecA_xywh = box[i]
        RecA_xyxy = xywh2xyxy(RecA_xywh)
        for j in range(i+1, len(box)):
            RecB_xywh = box[j]
            RecB_xyxy = xywh2xyxy(RecB_xywh)
            if is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy):
                rect_xyxy = merge_RecA_RecB(RecA_xyxy, RecB_xyxy)
                rect_xywh = xyxy2xywh(rect_xyxy)
                # 使用remove(elem)来移除元素
                box.remove(RecA_xywh)
                box.remove(RecB_xywh)
                box.append(rect_xywh)
                merge_rect(box)
                # 返回上一级循环,避免重复处理已合并的矩形
                return box
    return box


if __name__=="__main__":
    # 原始
    box = [[256,256,10,10],[10,10,15,15],[20,20,10,10],[100,100,150,150],
           [200,200,100,100],[400,400,15,15],[410,410,15,15],[420,420,10,10]] # (x,y,w,h)
    print("原始的矩形框:",box)
    
    img = np.ones([512, 512, 3], np.uint8)
    for x,y,w,h in box:
        img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 255, 0), 2)
    cv2.imshow('origin', img)

    # 合并后
    merged_box =  merge_rect(box)
    print("合并的矩形框:",merged_box)

    img = np.ones([512, 512, 3], np.uint8) 
    for x,y,w,h in merged_box:
        img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 0, 255), 2)
    cv2.imshow('merged', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

在这里插入图片描述

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1102555.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小程序设计基本微信小程序的旅游社系统

项目介绍 现今市面上有关于旅游信息管理的微信小程序还是比较少的,所以本课题想对如今这么多的旅游景区做一个收集和分类。这样可以给身边喜欢旅游的朋友更好地推荐分享适合去旅行的地方。 前端采用HTML架构,遵循HTMLss JavaScript的开发方式&#xff0…

自动化测试框架指南

目录 定义测试自动化 不同类型的框架 以工具为中心的框架 面向项目的框架 关键字驱动的框架 完美测试自动化框架的主要组件 测试库 单元测试 集成和端到端测试 行为驱动开发 测试数据管理 mock,Stubs和虚拟化 实施模式的通用机制 测试结果报告 CI平台…

SpringBoot+自定义注解+AOP高级玩法打造通用开关

1.项目结构 2.引入依赖 <dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot<…

英特尔 SGX 技术概述

目录 介绍概述指示结构Memory安全区页面缓存Enclave Page Cache &#xff08;EPC&#xff09;安全区页面缓存映射Enclave Page Cache Map (EPCM) Memory ManagementStructures页面信息Page Information (PAGEINFO)安全信息Security Information (SECINFO)分页加密元数据Paging …

ardupilot开发 --- 起飞前后 篇

起飞前检查 电机响应是否正确&#xff08;转向&#xff09;姿态响应是否正常&#xff08;roll pitch yaw&#xff09;GPS数据是否正常&#xff08;星数&#xff0c;RTK信号&#xff09;电源电压安全开关安全检测&#xff08;armed pre check&#xff09; 起飞前的必调参数 机…

SpringCloud 完整版--(Spring Cloud Netflix 体系)

目录 SpringCloudSpring Cloud Netflix 体系分布式概念&#xff1a;分析图单体应用分布式架构集群微服务分布式微服务集群 服务注册与发现Eureka作用&#xff1a;为什么使用Eureka&#xff1f;解答&#xff1a;分析图 搭建&#xff1a;1、注册中心Eureka-server搭建创建项目配置…

springboot苍穹外卖实战:三、新增员工(JWT令牌校验失败+用户名重复+ThreadLocal获取用户id解决方案)

新增员工 根据前端传递参数列表设计DTO 当前端提交的数据和实体类中对应的属性差别比较大时&#xff0c;建议使用DTO来封装数据。进入sky-pojo模块&#xff0c;在com.sky.dto包下&#xff0c;已定义EmployeeDTO。 EmployeeController /*** 新增员工* param employeeDTO* ret…

检测密码安全强度 和 凯撒加密

检测密码安全强度 按照含有数字,小写字母,大写字母,指定标点符号的种类,把安全强度分为强密码,中高,中低,弱密码. 编写程序,输入一个字符串,输出该字符串作为密码时的安全强度 from string import digits, ascii_lowercase, ascii_uppercasedef check(pwd):# 密码必须至少包含…

【前端学习】—使用多种方式实现数组去重(六)

【前端学习】—使用多种方式实现数组去重(六) 一、数组常用的几个方法 //[1,2,3,4,2,1]//[{name:"caicai",age:"10"},{name:"zhangsan",age:"20"}]const array=[

jmeter监听每秒点击数(Hits per Second)

jmeter监听每秒点击数&#xff08;Hits per Second&#xff09; 下载插件添加监听器执行压测&#xff0c;监听结果 下载插件 点击选项&#xff0c;点击Plugins Manager (has upgrades)&#xff0c;点击Available Plugins&#xff0c;搜索5 Additional Graphs安装。 添加监听…

C++新经典 | C++ 查漏补缺(内存)

目录 一、new和delete 1.new类对象时&#xff0c;括号问题 2.new做了什么事 3.delete做了什么事 4.new与malloc的区别 5.delete与free的区别 二、分配及释放内存 三、重载operator new和operator delete操作符 1.重载类中的operator new和operator delete操作符 &…

通信系统中ZF,ML,MRC以及MMSE四种信号检测算法误码率matlab对比仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1、ZF&#xff08;零迫&#xff09;算法 4.2、ML&#xff08;最大似然&#xff09;算法 4.3、MRC&#xff08;最大比合并&#xff09;算法 4.4、MMSE&#xff08;最小均方误差&#xff…

2024杭州人工智能展会(世亚智博会)一场人工智能领域的视觉盛宴

2024年&#xff0c;一场规模空前的人工智能盛会将在杭州国际博览中心盛大开幕。这场名为“2024杭州国际人工智能展览会&#xff08;简称&#xff1a;世亚智博会&#xff09;”的展会活动&#xff0c;将于4月份在杭州国际博览中心隆重举行&#xff0c;届时将迎来一场人工智能领域…

网络安全必备常识:Web应用防火墙是什么?

如今&#xff0c;很多企业都将应用架设在Web平台上&#xff0c;为用户提供更为方便、快捷的服务支持&#xff0c;例如网上银行、网上购物等。与此同时&#xff0c;应用程序组合变得前所未有的复杂和多样化&#xff0c;这为攻击者发动攻击开辟了大量媒介&#xff0c;Web应用防火…

【C++ 学习 ㉘】- 详解 C++11 的列表初始化

目录 一、C11 简介 二、列表初始化 2.1 - 统一初始化 2.2 - 列表初始化的使用细节 2.2.1 - 聚合类型的定义 2.2.2 - 注意事项 2.3 - initializer_list 2.3.1 - 基本使用 2.3.2 - 源码剖析 一、C11 简介 1998 年&#xff0c;C 标准委员会发布了第一版 C 标准&#xff0…

使用new创建动态结构

在运行时创建数组优于在编译时创建数组&#xff0c;对于结构&#xff08;同一个结构可以存储多种类型的数据。&#xff09;也是如此。需要在程序运行时为结构分配所需的空间&#xff0c;这也可以使用new运算符来完成。通过使用new&#xff0c;可以创建动态结构。同样&#xff0…

【广州华锐互动】利用AR进行野外地质调查学习,培养学生实践能力

在科技发展的驱动下&#xff0c;AR&#xff08;增强现实&#xff09;技术已经在许多领域中找到了应用&#xff0c;包括医疗、教育、建筑和娱乐等。然而&#xff0c;有一个领域尚未充分利用AR技术的潜力&#xff0c;那就是野外地质调查。通过将AR技术引入到这个传统上需要大量人…

免费:实时 AI 编程助手 Amazon CodeWhisperer

点 &#xff0c;一起程序员弯道超车之路 现已正式推出实时 AI 编程助手 Amazon CodeWhisperer&#xff0c;包括 CodeWhisperer 个人套餐&#xff0c;所有开发人员均可免费使用。最初于去年推出的预览版 CodeWhisperer 让开发人员能够保持专注、高效&#xff0c;帮助他们快速、安…

rabbitMq (2)

RabbitMQ 消息应答与发布 文章目录 1. 消息应答1.2 自动应答1.2 手动应答1.3 代码案例 2. RabbitMQ 持久化2.1 队列持久化2.2 消息持久化 3. 不公平分发4. 预取值分发5. 发布确认5.1 发布确认逻辑5.2 开启发布确认的方法5.3 单个确认发布5.4 批量确认发布5.5 异步确认5.5.1 处理…

【milkv】更新rndis驱动

问题 由于windows升级到了11&#xff0c;导致rndis驱动无法识别到。 解决 打开设备管理器&#xff0c;查看网络适配器&#xff0c;没有更新会显示黄色的图标。 右击选择更新驱动