一、内容介绍
  该测量系统基于三轴加速度和三轴陀螺仪,安装在钻柱内部,随钻柱一起旋转,形成捷联惯性导航系统,安装如下图所示:
 
   假设三轴加速度和陀螺仪的输出为: 
      
       
        
         
         
           f 
          
         
           b 
          
         
        
          = 
         
         
          
          
            [ 
           
           
            
             
              
               
               
                 f 
                
               
                 x 
                
               
              
             
             
              
               
               
                 f 
                
               
                 y 
                
               
              
             
             
              
               
               
                 f 
                
               
                 z 
                
               
              
             
            
           
          
            ] 
           
          
         
           T 
          
         
        
       
         f^b=\begin{bmatrix}f_{x} & f_{y} &f_{z} \end{bmatrix}^T 
        
       
     fb=[fxfyfz]T  
      
       
        
         
         
           w 
          
         
           b 
          
         
        
          = 
         
         
          
          
            [ 
           
           
            
             
              
               
               
                 w 
                
               
                 x 
                
               
              
             
             
              
               
               
                 w 
                
               
                 y 
                
               
              
             
             
              
               
               
                 w 
                
               
                 z 
                
               
              
             
            
           
          
            ] 
           
          
         
           T 
          
         
        
       
         w^b=\begin{bmatrix}w_{x} & w_{y} &w_{z} \end{bmatrix}^T 
        
       
     wb=[wxwywz]T
   使用这六轴的输出可以非常有效的求解姿态,应用惯性导航的求解算法,可以实现钻孔时的连续测量。加速度计和陀螺仪可以在坐标系中提供线加速度和角速度。但是,如果要求解钻具的位姿,则需要将该坐标系转换为另一个坐标系。
   Xe、Ye、Ze三个轴代表地球坐标系。导航坐标系用于计算载体的位置、速度和姿态,因为导航坐标系沿当地的北、东、垂直方向,如下图中的“N, E, UP”,其中λ为经度角,φ为纬度角。在载体坐标系下,利用INS力学方程可得到井斜、井向和工具面角。
   将b系统中测得的加速度和角速度值通过变换矩阵Rn b转换为n系统,即可求解井底工具的空间位置和姿态[28]。定义底部的经度为λ,纬度为φ,海拔为h,则其位置可表示为: 
      
       
        
         
         
           r 
          
         
           n 
          
         
        
          = 
         
         
          
          
            [ 
           
           
            
             
              
              
                φ 
               
              
             
             
              
              
                λ 
               
              
             
             
              
              
                h 
               
              
             
            
           
          
            ] 
           
          
         
           T 
          
         
        
       
         r^n=\begin{bmatrix}φ & λ &h \end{bmatrix}^T 
        
       
     rn=[φλh]T
   定义n系统的速度分量,向北速度为Vn,向东速度为Ve,垂直速度为Vu。然后定义n系统的速度为: 
      
       
        
         
         
           r 
          
         
           n 
          
         
        
          = 
         
         
          
          
            [ 
           
           
            
             
              
               
               
                 V 
                
               
                 e 
                
               
              
             
             
              
               
               
                 V 
                
               
                 n 
                
               
              
             
             
              
               
               
                 V 
                
               
                 u 
                
               
              
             
            
           
          
            ] 
           
          
         
           T 
          
         
        
       
         r^n=\begin{bmatrix}V^e & V^n &V^u\end{bmatrix}^T 
        
       
     rn=[VeVnVu]T
   速度分量可以表示为位置分量对时间的导数:
 
   上式中,M为子午线的曲率半径,N为地球椭圆的曲率半径。
   在载体坐标系下,加速度计 
     
      
       
        
        
          f 
         
        
          b 
         
        
       
         = 
        
        
         
         
           [ 
          
          
           
            
             
              
              
                f 
               
              
                x 
               
              
             
            
            
             
              
              
                f 
               
              
                y 
               
              
             
            
            
             
              
              
                f 
               
              
                z 
               
              
             
            
           
          
         
           ] 
          
         
        
          T 
         
        
       
      
        f^b=\begin{bmatrix}f_{x} & f_{y} &f_{z}\end{bmatrix}^T 
       
      
    fb=[fxfyfz]T 通过变换矩阵 
     
      
       
        
        
          R 
         
        
          b 
         
        
          n 
         
        
       
      
        R^n_{b} 
       
      
    Rbn转换到地理坐标系的测量值为:
 
   n坐标系中的加速度分量 
     
      
       
        
        
          f 
         
        
          n 
         
        
       
      
        f^n 
       
      
    fn可以对速度分量 
     
      
       
        
        
          v 
         
        
          n 
         
        
       
      
        v^n 
       
      
    vn积分。但由于地球本身的存在,会影响求解过程。地球自转速度为 
     
      
       
        
        
          w 
         
        
          e 
         
        
       
         = 
        
       
         15 
        
       
         d 
        
       
         e 
        
       
         g 
        
       
         / 
        
       
         h 
        
       
         r 
        
       
      
        w^e=15deg/hr 
       
      
    we=15deg/hr,用n坐标系表示的角速度矢量如下式所示:
 
  地理坐标系的变化取决于导航坐标系中北方和垂直方向的定义。北方方向通常指向子午线方向,垂直方向指向地球表面,如下图所示:
 在导航坐标系中,角速度矢量可表示为:
 
   地球引力也影响IMU的加速度测量。我们可以用重力模型来修正。地球重力场可以表示为:
   地球引力场在n系列中可以表示为: 
     
      
       
        
        
          g 
         
        
          n 
         
        
       
         = 
        
        
        
          [ 
         
         
          
           
            
            
              0 
             
            
           
           
            
            
              0 
             
            
           
           
            
             
             
               − 
              
             
               g 
              
             
            
           
          
         
        
          ] 
         
        
       
      
        g^n=\begin{bmatrix}0&0&-g\end{bmatrix} 
       
      
    gn=[00−g].考虑到地球因素的影响,速度分量Vn的变化率可以表示为:
 其中:
 
   变换矩阵 
     
      
       
        
        
          R 
         
        
          b 
         
        
          n 
         
        
       
      
        R^n_{b} 
       
      
    Rbn可由以下微分方程得到:
 
 其中 
     
      
       
        
        
          Ω 
         
         
         
           i 
          
         
           b 
          
         
        
          b 
         
        
       
      
        Ω^b_{ib} 
       
      
    Ωibb为陀螺仪测得的角速度的反对称矩阵,角速度矢量 
     
      
       
        
        
          Ω 
         
         
         
           i 
          
         
           b 
          
         
        
          b 
         
        
       
      
        Ω^b_{ib} 
       
      
    Ωibb可表示为:
 
   陀螺仪测量底部钻具的角速度,同时也测量地球自转的角速度和导航坐标系的方向。因此,需要从 
     
      
       
        
        
          Ω 
         
         
         
           i 
          
         
           b 
          
         
        
          b 
         
        
       
      
        Ω^b_{ib} 
       
      
    Ωibb中减去角速度 
     
      
       
        
        
          Ω 
         
         
         
           i 
          
         
           n 
          
         
        
          b 
         
        
       
      
        Ω^b_{in} 
       
      
    Ωinb,以消除这两个因素的影响。角速度矢量 
     
      
       
        
        
          Ω 
         
         
         
           i 
          
         
           n 
          
         
        
          b 
         
        
       
      
        Ω^b_{in} 
       
      
    Ωinb包含两部分,第一部分是地球自转速度 
     
      
       
        
        
          Ω 
         
         
         
           i 
          
         
           e 
          
         
        
          b 
         
        
       
      
        Ω^b_{ie} 
       
      
    Ωieb和导航坐标系方向变化速度 
     
      
       
        
        
          Ω 
         
         
         
           e 
          
         
           n 
          
         
        
          b 
         
        
       
      
        Ω^b_{en} 
       
      
    Ωenb,如下图所示:
   速度矩阵的反对称矩阵可以表示为:
   最后得到变换矩阵如下:
   定义井斜角为θ,方位角为ψ,工具面为φ,变换矩阵 
     
      
       
        
        
          R 
         
        
          b 
         
        
          n 
         
        
       
      
        R^n_{b} 
       
      
    Rbn可表示为:
   根据前面的假设,三轴加速度计的输出信号为: 
      
       
        
         
         
           f 
          
         
           b 
          
         
        
          = 
         
         
          
          
            [ 
           
           
            
             
              
               
               
                 f 
                
               
                 x 
                
               
              
             
             
              
               
               
                 f 
                
               
                 y 
                
               
              
             
             
              
               
               
                 f 
                
               
                 z 
                
               
              
             
            
           
          
            ] 
           
          
         
           T 
          
         
        
       
         f^b=\begin{bmatrix}f_{x} & f_{y} &f_{z} \end{bmatrix}^T 
        
       
     fb=[fxfyfz]T   三轴陀螺仪的输出信号为: 
      
       
        
         
         
           w 
          
         
           b 
          
         
        
          = 
         
         
          
          
            [ 
           
           
            
             
              
               
               
                 w 
                
               
                 x 
                
               
              
             
             
              
               
               
                 w 
                
               
                 y 
                
               
              
             
             
              
               
               
                 w 
                
               
                 z 
                
               
              
             
            
           
          
            ] 
           
          
         
           T 
          
         
        
       
         w^b=\begin{bmatrix}w_{x} & w_{y} &w_{z} \end{bmatrix}^T 
        
       
     wb=[wxwywz]T  从测量的角速度可以计算出角度变化量:
 
   同样,由加速度的测量值可以计算出线速度:
   考虑到地球自转和导航坐标系方向变化的影响,在时刻tk时,角度的增加可表示为:
   然后,
   综上所述,基于地理坐标系的捷联惯性导航系统的力学方程如下:
 
上式的解可以用欧拉角法、方向余弦法或四元数法求解。通过在载体轴上安装三轴加速度计和三轴陀螺仪,可以通过测量值获得载体的姿态、速度和位置等信息。
二、往期回顾
课题学习(一)----静态测量
 课题学习(二)----倾角和方位角的动态测量方法(基于磁场的测量系统)



![socket.error: [Errno 10049]错误](https://img-blog.csdnimg.cn/eba3ada035f14233b92c5b963b452be3.png)














