目标检测算法改进系列之Neck添加渐近特征金字塔网络(AFPN模块)

news2025/5/24 9:04:02

渐近特征金字塔网络(AFPN模块)

在目标检测任务中,多尺度特征对具有尺度差异的目标进行编码具有重要意义。多尺度特征提取的常用策略是采用经典的自顶向下和自底向上的特征金字塔网络。

然而,这些方法存在特征信息丢失或退化的问题,影响了非相邻水平的融合效果。提出了一种支持非相邻层次直接交互的渐近特征金字塔网络(AFPN)。AFPN首先融合两个相邻的低级特征,然后逐渐将高级特征融入融合过程。这样可以避免非相邻层之间较大的语义差距。考虑到在每个空间位置的特征融合过程中可能出现多目标信息冲突,进一步利用自适应空间融合操作来缓解这些不一致。

论文地址:AFPN: Asymptotic Feature Pyramid Network for Object Detection

AFPN结构图

代码实现

from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F

from mmdet.registry import MODELS


def BasicConv(filter_in, filter_out, kernel_size, stride=1, pad=None):
    if not pad:
        pad = (kernel_size - 1) // 2 if kernel_size else 0
    else:
        pad = pad
    return nn.Sequential(OrderedDict([
        ("conv", nn.Conv2d(filter_in, filter_out, kernel_size=kernel_size, stride=stride, padding=pad, bias=False)),
        ("bn", nn.BatchNorm2d(filter_out)),
        ("relu", nn.ReLU(inplace=True)),
    ]))


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, filter_in, filter_out):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(filter_in, filter_out, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(filter_out, momentum=0.1)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(filter_out, filter_out, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(filter_out, momentum=0.1)

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += residual
        out = self.relu(out)

        return out


class Upsample(nn.Module):
    def __init__(self, in_channels, out_channels, scale_factor=2):
        super(Upsample, self).__init__()

        self.upsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 1),
            nn.Upsample(scale_factor=scale_factor, mode='bilinear')
        )

        # carafe
        # from mmcv.ops import CARAFEPack
        # self.upsample = nn.Sequential(
        #     BasicConv(in_channels, out_channels, 1),
        #     CARAFEPack(out_channels, scale_factor=scale_factor)
        # )

    def forward(self, x):
        x = self.upsample(x)

        return x


class Downsample_x2(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x2, self).__init__()

        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 2, 2, 0)
        )

    def forward(self, x, ):
        x = self.downsample(x)

        return x


class Downsample_x4(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x4, self).__init__()

        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 4, 4, 0)
        )

    def forward(self, x, ):
        x = self.downsample(x)

        return x


class Downsample_x8(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x8, self).__init__()

        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 8, 8, 0)
        )

    def forward(self, x, ):
        x = self.downsample(x)

        return x


class ASFF_2(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_2, self).__init__()

        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 2, 2, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input1, input2):
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)

        levels_weight_v = torch.cat((level_1_weight_v, level_2_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input1 * levels_weight[:, 0:1, :, :] + \
                            input2 * levels_weight[:, 1:2, :, :]

        out = self.conv(fused_out_reduced)

        return out


class ASFF_3(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_3, self).__init__()

        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_3 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 3, 3, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input1, input2, input3):
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)
        level_3_weight_v = self.weight_level_3(input3)

        levels_weight_v = torch.cat((level_1_weight_v, level_2_weight_v, level_3_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input1 * levels_weight[:, 0:1, :, :] + \
                            input2 * levels_weight[:, 1:2, :, :] + \
                            input3 * levels_weight[:, 2:, :, :]

        out = self.conv(fused_out_reduced)

        return out


class ASFF_4(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_4, self).__init__()

        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_0 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_3 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 4, 4, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input0, input1, input2, input3):
        level_0_weight_v = self.weight_level_0(input0)
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)
        level_3_weight_v = self.weight_level_3(input3)

        levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v, level_3_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input0 * levels_weight[:, 0:1, :, :] + \
                            input1 * levels_weight[:, 1:2, :, :] + \
                            input2 * levels_weight[:, 2:3, :, :] + \
                            input3 * levels_weight[:, 3:, :, :]

        out = self.conv(fused_out_reduced)

        return out


class BlockBody(nn.Module):
    def __init__(self, channels=[64, 128, 256, 512]):
        super(BlockBody, self).__init__()

        self.blocks_scalezero1 = nn.Sequential(
            BasicConv(channels[0], channels[0], 1),
        )
        self.blocks_scaleone1 = nn.Sequential(
            BasicConv(channels[1], channels[1], 1),
        )
        self.blocks_scaletwo1 = nn.Sequential(
            BasicConv(channels[2], channels[2], 1),
        )
        self.blocks_scalethree1 = nn.Sequential(
            BasicConv(channels[3], channels[3], 1),
        )

        self.downsample_scalezero1_2 = Downsample_x2(channels[0], channels[1])
        self.upsample_scaleone1_2 = Upsample(channels[1], channels[0], scale_factor=2)

        self.asff_scalezero1 = ASFF_2(inter_dim=channels[0])
        self.asff_scaleone1 = ASFF_2(inter_dim=channels[1])

        self.blocks_scalezero2 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone2 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )

        self.downsample_scalezero2_2 = Downsample_x2(channels[0], channels[1])
        self.downsample_scalezero2_4 = Downsample_x4(channels[0], channels[2])
        self.downsample_scaleone2_2 = Downsample_x2(channels[1], channels[2])
        self.upsample_scaleone2_2 = Upsample(channels[1], channels[0], scale_factor=2)
        self.upsample_scaletwo2_2 = Upsample(channels[2], channels[1], scale_factor=2)
        self.upsample_scaletwo2_4 = Upsample(channels[2], channels[0], scale_factor=4)

        self.asff_scalezero2 = ASFF_3(inter_dim=channels[0])
        self.asff_scaleone2 = ASFF_3(inter_dim=channels[1])
        self.asff_scaletwo2 = ASFF_3(inter_dim=channels[2])

        self.blocks_scalezero3 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone3 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )
        self.blocks_scaletwo3 = nn.Sequential(
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
        )

        self.downsample_scalezero3_2 = Downsample_x2(channels[0], channels[1])
        self.downsample_scalezero3_4 = Downsample_x4(channels[0], channels[2])
        self.downsample_scalezero3_8 = Downsample_x8(channels[0], channels[3])
        self.upsample_scaleone3_2 = Upsample(channels[1], channels[0], scale_factor=2)
        self.downsample_scaleone3_2 = Downsample_x2(channels[1], channels[2])
        self.downsample_scaleone3_4 = Downsample_x4(channels[1], channels[3])
        self.upsample_scaletwo3_4 = Upsample(channels[2], channels[0], scale_factor=4)
        self.upsample_scaletwo3_2 = Upsample(channels[2], channels[1], scale_factor=2)
        self.downsample_scaletwo3_2 = Downsample_x2(channels[2], channels[3])
        self.upsample_scalethree3_8 = Upsample(channels[3], channels[0], scale_factor=8)
        self.upsample_scalethree3_4 = Upsample(channels[3], channels[1], scale_factor=4)
        self.upsample_scalethree3_2 = Upsample(channels[3], channels[2], scale_factor=2)

        self.asff_scalezero3 = ASFF_4(inter_dim=channels[0])
        self.asff_scaleone3 = ASFF_4(inter_dim=channels[1])
        self.asff_scaletwo3 = ASFF_4(inter_dim=channels[2])
        self.asff_scalethree3 = ASFF_4(inter_dim=channels[3])

        self.blocks_scalezero4 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone4 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )
        self.blocks_scaletwo4 = nn.Sequential(
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
        )
        self.blocks_scalethree4 = nn.Sequential(
            BasicBlock(channels[3], channels[3]),
            BasicBlock(channels[3], channels[3]),
            BasicBlock(channels[3], channels[3]),
            BasicBlock(channels[3], channels[3]),
        )

    def forward(self, x):
        x0, x1, x2, x3 = x

        x0 = self.blocks_scalezero1(x0)
        x1 = self.blocks_scaleone1(x1)
        x2 = self.blocks_scaletwo1(x2)
        x3 = self.blocks_scalethree1(x3)

        scalezero = self.asff_scalezero1(x0, self.upsample_scaleone1_2(x1))
        scaleone = self.asff_scaleone1(self.downsample_scalezero1_2(x0), x1)

        x0 = self.blocks_scalezero2(scalezero)
        x1 = self.blocks_scaleone2(scaleone)

        scalezero = self.asff_scalezero2(x0, self.upsample_scaleone2_2(x1), self.upsample_scaletwo2_4(x2))
        scaleone = self.asff_scaleone2(self.downsample_scalezero2_2(x0), x1, self.upsample_scaletwo2_2(x2))
        scaletwo = self.asff_scaletwo2(self.downsample_scalezero2_4(x0), self.downsample_scaleone2_2(x1), x2)

        x0 = self.blocks_scalezero3(scalezero)
        x1 = self.blocks_scaleone3(scaleone)
        x2 = self.blocks_scaletwo3(scaletwo)

        scalezero = self.asff_scalezero3(x0, self.upsample_scaleone3_2(x1), self.upsample_scaletwo3_4(x2), self.upsample_scalethree3_8(x3))
        scaleone = self.asff_scaleone3(self.downsample_scalezero3_2(x0), x1, self.upsample_scaletwo3_2(x2), self.upsample_scalethree3_4(x3))
        scaletwo = self.asff_scaletwo3(self.downsample_scalezero3_4(x0), self.downsample_scaleone3_2(x1), x2, self.upsample_scalethree3_2(x3))
        scalethree = self.asff_scalethree3(self.downsample_scalezero3_8(x0), self.downsample_scaleone3_4(x1), self.downsample_scaletwo3_2(x2), x3)

        scalezero = self.blocks_scalezero4(scalezero)
        scaleone = self.blocks_scaleone4(scaleone)
        scaletwo = self.blocks_scaletwo4(scaletwo)
        scalethree = self.blocks_scalethree4(scalethree)

        return scalezero, scaleone, scaletwo, scalethree


@MODELS.register_module()
class AFPN(nn.Module):
    def __init__(self,
                 in_channels=[256, 512, 1024, 2048],
                 out_channels=256):
        super(AFPN, self).__init__()

        self.fp16_enabled = False

        self.conv0 = BasicConv(in_channels[0], in_channels[0] // 8, 1)
        self.conv1 = BasicConv(in_channels[1], in_channels[1] // 8, 1)
        self.conv2 = BasicConv(in_channels[2], in_channels[2] // 8, 1)
        self.conv3 = BasicConv(in_channels[3], in_channels[3] // 8, 1)

        self.body = nn.Sequential(
            BlockBody([in_channels[0] // 8, in_channels[1] // 8, in_channels[2] // 8, in_channels[3] // 8])
        )

        self.conv00 = BasicConv(in_channels[0] // 8, out_channels, 1)
        self.conv11 = BasicConv(in_channels[1] // 8, out_channels, 1)
        self.conv22 = BasicConv(in_channels[2] // 8, out_channels, 1)
        self.conv33 = BasicConv(in_channels[3] // 8, out_channels, 1)
        self.conv44 = nn.MaxPool2d(kernel_size=1, stride=2)

        # init weight
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight, gain=0.02)
            elif isinstance(m, nn.BatchNorm2d):
                torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
                torch.nn.init.constant_(m.bias.data, 0.0)

    def forward(self, x):
        x0, x1, x2, x3 = x

        x0 = self.conv0(x0)
        x1 = self.conv1(x1)
        x2 = self.conv2(x2)
        x3 = self.conv3(x3)

        out0, out1, out2, out3 = self.body([x0, x1, x2, x3])

        out0 = self.conv00(out0)
        out1 = self.conv11(out1)
        out2 = self.conv22(out2)
        out3 = self.conv33(out3)
        out4 = self.conv44(out3)

        return out0, out1, out2, out3, out4

if __name__ == "__main__":
    print()

YOLOv5添加AFPN模块

YOLOv8、YOLOv7、YOLOv5、YOLOv4、Faster-rcnn等目标检测算法都可以使用,YOLOv5添加AFPN模块代码实例如下:

from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F

from mmyolo.registry import MODELS


def BasicConv(filter_in, filter_out, kernel_size, stride=1):
    pad = (kernel_size - 1) // 2 if kernel_size else 0
    return nn.Sequential(OrderedDict([
        ("conv", nn.Conv2d(filter_in, filter_out, kernel_size=kernel_size, stride=stride, padding=pad, bias=False)),
        ("bn", nn.BatchNorm2d(filter_out)),
        ("silu", nn.SiLU(inplace=True)),
    ]))


def Conv(filter_in, filter_out, kernel_size, stride=1, pad=0):
    return nn.Sequential(OrderedDict([
        ("conv", nn.Conv2d(filter_in, filter_out, kernel_size=kernel_size, stride=stride, padding=pad, bias=False)),
        ("bn", nn.BatchNorm2d(filter_out)),
        ("silu", nn.SiLU(inplace=True)),
    ]))


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, filter_in, filter_out):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(filter_in, filter_out, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(filter_out, momentum=0.1)
        self.silu = nn.SiLU(inplace=True)
        self.conv2 = nn.Conv2d(filter_out, filter_out, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(filter_out, momentum=0.1)

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.silu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += residual
        out = self.silu(out)

        return out


class Upsample(nn.Module):
    def __init__(self, in_channels, out_channels, scale_factor=2):
        super(Upsample, self).__init__()

        self.upsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 1),
            nn.Upsample(scale_factor=scale_factor, mode='bilinear')
        )

    def forward(self, x, ):
        x = self.upsample(x)
        return x


class Downsample_x2(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x2, self).__init__()

        self.downsample = nn.Sequential(
            Conv(in_channels, out_channels, 2, 2)
        )

    def forward(self, x, ):
        x = self.downsample(x)

        return x


class Downsample_x4(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x4, self).__init__()

        self.downsample = nn.Sequential(
            Conv(in_channels, out_channels, 4, 4)
        )

    def forward(self, x, ):
        x = self.downsample(x)

        return x


class ASFF_2(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_2, self).__init__()

        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 2, 2, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input1, input2):
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)

        levels_weight_v = torch.cat((level_1_weight_v, level_2_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input1 * levels_weight[:, 0:1, :, :] + \
                            input2 * levels_weight[:, 1:2, :, :]

        out = self.conv(fused_out_reduced)

        return out


class ASFF_3(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_3, self).__init__()

        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_3 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 3, 3, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input1, input2, input3):
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)
        level_3_weight_v = self.weight_level_3(input3)

        levels_weight_v = torch.cat((level_1_weight_v, level_2_weight_v, level_3_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input1 * levels_weight[:, 0:1, :, :] + \
                            input2 * levels_weight[:, 1:2, :, :] + \
                            input3 * levels_weight[:, 2:, :, :]

        out = self.conv(fused_out_reduced)

        return out


class ScaleBlockBody(nn.Module):
    def __init__(self, channels=[128, 256, 512]):
        super(ScaleBlockBody, self).__init__()

        self.blocks_top1 = nn.Sequential(
            BasicConv(channels[0], channels[0], 1),
        )
        self.blocks_mid1 = nn.Sequential(
            BasicConv(channels[1], channels[1], 1),
        )
        self.blocks_bot1 = nn.Sequential(
            BasicConv(channels[2], channels[2], 1),
        )

        self.downsample_top1_2 = Downsample_x2(channels[0], channels[1])
        self.upsample_mid1_2 = Upsample(channels[1], channels[0], scale_factor=2)

        self.asff_top1 = ASFF_2(inter_dim=channels[0])
        self.asff_mid1 = ASFF_2(inter_dim=channels[1])

        self.blocks_top2 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0])
        )
        self.blocks_mid2 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1])
        )

        self.downsample_top2_2 = Downsample_x2(channels[0], channels[1])
        self.downsample_top2_4 = Downsample_x4(channels[0], channels[2])
        self.downsample_mid2_2 = Downsample_x2(channels[1], channels[2])
        self.upsample_mid2_2 = Upsample(channels[1], channels[0], scale_factor=2)
        self.upsample_bot2_2 = Upsample(channels[2], channels[1], scale_factor=2)
        self.upsample_bot2_4 = Upsample(channels[2], channels[0], scale_factor=4)

        self.asff_top2 = ASFF_3(inter_dim=channels[0])
        self.asff_mid2 = ASFF_3(inter_dim=channels[1])
        self.asff_bot2 = ASFF_3(inter_dim=channels[2])

        self.blocks_top3 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0])
        )
        self.blocks_mid3 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1])
        )
        self.blocks_bot3 = nn.Sequential(
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2])
        )

    def forward(self, x):
        x1, x2, x3 = x

        x1 = self.blocks_top1(x1)
        x2 = self.blocks_mid1(x2)
        x3 = self.blocks_bot1(x3)

        top = self.asff_top1(x1, self.upsample_mid1_2(x2))
        mid = self.asff_mid1(self.downsample_top1_2(x1), x2)

        x1 = self.blocks_top2(top)
        x2 = self.blocks_mid2(mid)

        top = self.asff_top2(x1, self.upsample_mid2_2(x2), self.upsample_bot2_4(x3))
        mid = self.asff_mid2(self.downsample_top2_2(x1), x2, self.upsample_bot2_2(x3))
        bot = self.asff_bot2(self.downsample_top2_4(x1), self.downsample_mid2_2(x2), x3)

        top = self.blocks_top3(top)
        mid = self.blocks_mid3(mid)
        bot = self.blocks_bot3(bot)

        return top, mid, bot

@MODELS.register_module()
class YOLOv5AFPN(nn.Module):
    def __init__(self, in_channels=[256, 512, 1024], out_channels=[256, 512, 1024]):
        super(YOLOv5AFPN, self).__init__()

        self.conv1 = BasicConv(in_channels[0], in_channels[0] // 4, 1)
        self.conv2 = BasicConv(in_channels[1], in_channels[1] // 4, 1)
        self.conv3 = BasicConv(in_channels[2], in_channels[2] // 4, 1)

        self.body = nn.Sequential(
            ScaleBlockBody([in_channels[0] // 4, in_channels[1] // 4, in_channels[2] // 4])
        )

        self.conv11 = BasicConv(in_channels[0] // 4, out_channels[0], 1)
        self.conv22 = BasicConv(in_channels[1] // 4, out_channels[1], 1)
        self.conv33 = BasicConv(in_channels[2] // 4, out_channels[2], 1)

        # ----------------------------------------------------------------#
        #   init weight
        # ----------------------------------------------------------------#
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight, gain=0.02)
            elif isinstance(m, nn.BatchNorm2d):
                torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
                torch.nn.init.constant_(m.bias.data, 0.0)

    def forward(self, x):
        x1, x2, x3 = x

        x1 = self.conv1(x1)
        x2 = self.conv2(x2)
        x3 = self.conv3(x3)

        out1, out2, out3 = self.body([x1, x2, x3])

        out1 = self.conv11(out1)
        out2 = self.conv22(out2)
        out3 = self.conv33(out3)

        return tuple([out1, out2, out3])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1027925.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【音视频】ffplay源码解析-FrameQueue队列

帧队列架构位置 结构体源码 FrameQueue结构体 /* 这是一个循环队列,windex是指其中的首元素,rindex是指其中的尾部元素. */ typedef struct FrameQueue {Frame queue[FRAME_QUEUE_SIZE]; // FRAME_QUEUE_SIZE 最大size, 数字太大时会占用大量的…

第二证券:什么是a股b股?

在我国的股市中,我们经常会听到“A股”和“B股”这两个名词。那么,终究什么是A股和B股呢? 首先,A股全称为“A股票”,是指在我国境内上市的以人民币计价的股票。A股首要面向国内出资者,只要具有必定条件的内…

如何快速检测代理IP质量?方法与工具全干货

一直以来,IP代理都是出海跨境业务的刚需。质量好的IP代理,除了在跨境业务产生巨大作用,在SEO监控、爬虫抓取、市场研究等领域也发挥着很大的作用。但是,对于IP代理的质量检测是我们选择高标准IP代理的一句,我们一般都会…

美国零售电商平台Target,值得入驻吗?如何入驻?

Target 是美国最大的零售商之一,在品牌出海为大势所趋的背景下,它在北美电商中的地位节节攀升。Target 商店在众多垂直领域提供各种价格实惠的自有品牌,吸引越来越多的跨境商家入驻,如美妆、家居、鞋服、日用百货等,随…

Mybatis学习笔记12 分页插件

Mybatis学习笔记11 缓存相关_biubiubiu0706的博客-CSDN博客 (5) select distinct top(<取数说明>) <选择 列表> (1) from <表1> <连接类型> join <表2> ON <连接条件> (2) where <筛选条件> (3) group by <分组条件> (4) havi…

linux下链接

linux下链接用法 ln链接格式与介绍 linux下链接用法一、链接的使用格式二、链接的介绍 一、链接的使用格式 链接&#xff1a; 格式&#xff1a; ln 源文件 链接文件 硬链接 ln -s 源文件 链接文件 软连接 硬链接文件占磁盘空间 但是删除源文件不会影响硬链接文件 软链接文件不…

秒杀场景设计

1.活动页面静态化处理 没有到活动时间页面静态化处理避免访问服务端 2.使用cdn让用户可以获取就近的所需静态页面内容 3.限制用户同一时间点击次数 4.把商品库存提前放入redis&#xff0c;秒杀请求直接操作redis防止操作直接落库打崩数据库 5.使用lua脚本操作redis保证操作…

transformer系列2---transformer架构详细解析

transformer详细解析 Encoder1 输入1.1 Embedding 词嵌入1.1.1 Embedding 定义1.1.2 几种编码方式对比1.1.3 实现代码 1.2 位置编码1.2.1 使用位置编码原因1.2.2 位置编码方式1.2.3 位置编码代码 2 注意力 Attention2.1 自注意力self-attention2.1.1 QKV含义2.1.2 自注意力公式…

微信图文如何替换成自己的二维码?

二维码样式中的二维码目前都是小蚂蚁的二维码&#xff0c;如何替换成自己的二维码&#xff0c;其实也很简单&#xff0c;就像替换样式中的图片一样&#xff0c;首先点击二维码&#xff0c;选择工具条中的“换图”&#xff0c;然后在弹出来的框中填入二维码图片的链接地址或者直…

招股书更新9版终上市,飞沃科技能否躲过风电红利后的黯淡?

文丨熔财经 作者丨文泽 碳达峰、碳中和成为主旋律目标下&#xff0c;作为可再生能源主力的风电产业迎来了发展的“黄金时代”。与新能源相关的上下游企业也赚的“盆满钵满”。 在此背景下&#xff0c;飞沃科技(301232.SZ)历经4轮问询&#xff0c;更新9版招股书终于登陆资本市…

Command not found 解决方法

前言&#xff1a;要更新code上服务器用GUI失败&#xff0c;$ patch_delivery_gui&#xff0c;报错&#xff1a;patch_delivery_gui: command not found&#xff0c;上次编TA也是这个问题 写了个脚本&#xff1a;这个脚本会先检查ifconfig、firewall-cmd和vim命令是否可用&#…

ExcelServer EXCEL服务器使用- 用户、角色权限配置

Excel文件服务器搭建 搭建Excel服务器 1、登录 默认 用户名 Admin 密码 3 2、角色管理 添加修改角色 角色配置在 系统管理->角色.fexm文件夹下 可以像修改excel文件一样 修改角色 3、用户管理 添加修改用户 用户的修改在 系统管理->用户.fexm 可以像excel一样编辑用户…

27、Flink 的SQL之SELECT (窗口聚合)介绍及详细示例(4)

Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…

机器人中的数值优化(十七)—— 锥与对称锥

本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考&#xff0c;主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等&#xff0c;本系列文章篇数较多&#xff0c;不定期更新&#xff0c;上半部分介绍无约束优化&#xff0c;…

http的网站进行访问时候自动跳转至https

通常情况下我们是用的都是http的路径&#xff0c;对于https的使用也很少&#xff0c;但是随着https的普及越来越多的域名访问需要用到https的&#xff0c;这个我们就演示怎么设置在我们对一个http的网站进行访问时候自动跳转至https下。 用到的工具及软件: 系统&#xff1a;wi…

规划基础知识

1 规划简介 在规划中&#xff0c;我们通过结合高精地图&#xff0c;定位和预测来构建车辆轨迹。 规划的第一步就是路线导航&#xff0c;侧重于如何从地图上的A前往B&#xff0c;在进行路径规划时&#xff0c;将地图数据作为输入&#xff0c;并输出可行驶路径。 在Apollo中&…

亚马逊商品详情数据接口

亚马逊商品详情数据接口可以用于获取商品详情信息&#xff0c;包括但不限于商品ID、商品标题、商品描述等。这些信息可以用于多种用途&#xff0c;例如&#xff1a; 了解商品信息&#xff0c;帮助消费者做出购买决策。整合其他平台或网站的数据&#xff0c;提供全面的商品信息…

成集云 | 金蝶云星空与旺店通ERP集成(旺店通主管供应链)| 解决方案

源系统成集云目标系统 方案介绍 金蝶云星空是一款ERP企业管理软件&#xff0c;致力于为企业提供整体解决方案。金蝶财务软件种类功能齐全&#xff0c;能够全面满足企业的不同阶段、不同功能需求。帮助企业建立规范的业务流程&#xff0c;提升管理能力&#xff0c;降…

怎么设置IP白名单

IP白名单是一种网络安全机制&#xff0c;用于限制只允许特定的IP地址或IP地址范围通过访问控制。在本文中&#xff0c;我将详细解释IP白名单的概念、用途以及如何设置IP白名单。 **1. 什么是IP白名单&#xff1f;** IP白名单是一种访问控制列表&#xff0c;它允许或阻止特定的…

Django Web开发入门基础

官方有很详细的文档&#xff0c;但是看过几遍之后如果要翻找还是有点麻烦&#xff0c;本文算作是学习笔记&#xff0c;提取一些关键点记录下来&#xff0c;另附上官方教程 Writing your first Django app 注&#xff1a; 文中的指令使用py&#xff0c;是在Windows上&#xff0c…