计算机竞赛 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别

news2025/7/20 2:30:43

文章目录

  • 0 前言
  • 1 背景
  • 2 算法原理
    • 2.1 动物识别方法概况
    • 2.2 常用的网络模型
      • 2.2.1 B-CNN
      • 2.2.2 SSD
  • 3 SSD动物目标检测流程
  • 4 实现效果
  • 5 部分相关代码
    • 5.1 数据预处理
    • 5.2 构建卷积神经网络
    • 5.3 tensorflow计算图可视化
    • 5.4 网络模型训练
    • 5.5 对猫狗图像进行2分类
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的动物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 背景

目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加准确的识别和研究。因此,对基于深度学习的野生动物识别和研究,可以更好的帮助社会管理者和政府全面有效的对野生动物进行保护和监管,这也正是保护和识别野生动物的关键,同时这对整个自然和社会的和谐发展具有极大的推动作用。

2 算法原理

2.1 动物识别方法概况

基于人工特征的野生动物识别方法主要通过人工对野生动物图像中具有辨识度的特征信息进行提取,并通过特征比对的方式就可以对野生动物所属的类别进行识别判断。

在深度学习技术普及之前,传统的数字图像处理技术与传统机器学习技术一直是研究的热点。传统的数字图像处理技术有模块分割、降低噪声点、边缘检测等方法。传统的机器学习技术有支持向量机、随机森林算法、BP
神经网络算法等。

深度学习技术是通过计算机模拟人类大脑的分层表达结构来建立网络模型,从原始数据集中对相关信息逐层提取。之后通过建立相应的神经网络对数据进行学习和分析,从而提高对目标预测和识别的准确率。如今,深度学习技术已经相对成熟,在对目标进行特征提取方面,卷积神经网络技术逐渐取代了传统的图像处理技术,并且在人类的生产生活中得到了广泛应用,这为研究野生动物更高效的识别方法奠定了基础。

2.2 常用的网络模型

图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。目前在图像识别领域中,研究人员开始使用深度学习的技术,并通过在实际应用中发现,基于深度学习的识别技术比传统的识别技术效果更好,且更具有优势。

2.2.1 B-CNN

双线性卷积神经网络(Bilinear
CNN,B-CNN)[34]是用两个卷积神经网络对图像进行特征提取,然后使用相应的函数将得到所有特征进行组合,组合的数据带入到分类器中进行分类。

在这里插入图片描述

2.2.2 SSD

经典的 SSD 模型是由经典网络和特征提取网络组成。

通过引入性能更好的特征提取网络对 SSD
目标检测模型进行了优化。Fu[49]等人提出了增加卷积神经网络层数和深度的方法用于提高识别准确率。通过实际应用之后,发现该方法识别准确率确实得到了一定程度的提高,但是模型结构却越来越复杂,同时对深层次的网络训练也越来越困难。

在这里插入图片描述

3 SSD动物目标检测流程

在这里插入图片描述

学长首先对 DenseNet-169 网络进行初始化,使用 DenseNet-169 网络作为目标检测的前置网络结构,并运用迁移学习的方法对
DenseNet-169 进行预训练,并将Snapshot Serengeti数据集下的权重值迁移到野生动物检测任务中,使数据集的训练速度得到提升。将
DenseNet-169 作为前置网络置于 SSD 中的目标提取检测网络之前,更换完前置网络的 SSD 目标检测网络依然完整。

4 实现效果

在这里插入图片描述
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

5 部分相关代码

5.1 数据预处理


    import cv2 as cv
    import os
    import numpy as np
    

    import random
    import pickle
    
    import time
    
    start_time = time.time()
    
    data_dir = './data'
    batch_save_path = './batch_files'
    
    # 创建batch文件存储的文件夹
    os.makedirs(batch_save_path, exist_ok=True)
    
    # 图片统一大小:100 * 100
    # 训练集 20000:100个batch文件,每个文件200张图片
    # 验证集 5000:一个测试文件,测试时 50张 x 100 批次
    
    # 进入图片数据的目录,读取图片信息
    all_data_files = os.listdir(os.path.join(data_dir, 'train/'))
    
    # print(all_data_files)
    
    # 打算数据的顺序
    random.shuffle(all_data_files)
    
    all_train_files = all_data_files[:20000]
    all_test_files = all_data_files[20000:]
    
    train_data = []
    train_label = []
    train_filenames = []
    
    test_data = []
    test_label = []
    test_filenames = []
    
    # 训练集
    for each in all_train_files:
        img = cv.imread(os.path.join(data_dir,'train/',each),1)
        resized_img = cv.resize(img, (100,100))
    
        img_data = np.array(resized_img)
        train_data.append(img_data)
        if 'cat' in each:
            train_label.append(0)
        elif 'dog' in each:
            train_label.append(1)
        else:
            raise Exception('%s is wrong train file'%(each))
        train_filenames.append(each)
    
    # 测试集
    for each in all_test_files:
        img = cv.imread(os.path.join(data_dir,'train/',each), 1)
        resized_img = cv.resize(img, (100,100))
    
        img_data = np.array(resized_img)
        test_data.append(img_data)
        if 'cat' in each:
            test_label.append(0)
        elif 'dog' in each:
            test_label.append(1)
        else:
            raise Exception('%s is wrong test file'%(each))
        test_filenames.append(each)
    
    print(len(train_data), len(test_data))
    
    # 制作100个batch文件
    start = 0
    end = 200
    for num in range(1, 101):
        batch_data = train_data[start: end]
        batch_label = train_label[start: end]
        batch_filenames = train_filenames[start: end]
        batch_name = 'training batch {} of 15'.format(num)
    
        all_data = {
        'data':batch_data,
        'label':batch_label,
        'filenames':batch_filenames,
        'name':batch_name
        }
    
        with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:
            pickle.dump(all_data, f)
    
        start += 200
        end += 200
    
    # 制作测试文件
    all_test_data = {
        'data':test_data,
        'label':test_label,
        'filenames':test_filenames,
        'name':'test batch 1 of 1'
        }
    
    with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:
        pickle.dump(all_test_data, f)
    
    end_time = time.time()
    print('制作结束, 用时{}秒'.format(end_time - start_time))



5.2 构建卷积神经网络

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码


    conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
    conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
    pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
    conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
    conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
    pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
    conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
    conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
    pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
    conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
    conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
    pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')
    

    flatten = tf.layers.flatten(pool4)
    fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
    fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
    fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
    fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
    fc3 = tf.layers.dense(fc2, 2, None)



5.3 tensorflow计算图可视化


    self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
    self.y = tf.placeholder(tf.int64, [None], 'output_data')
    self.keep_prob = tf.placeholder(tf.float32)
    

    # 图片输入网络中
    fc = self.conv_net(self.x, self.keep_prob)
    self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
    self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
    self.predict = tf.argmax(fc, 1)
    self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
    self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
    self.saver = tf.train.Saver(max_to_keep=1)



最后的saver是要将训练好的模型保存到本地。

5.4 网络模型训练

然后编写训练部分的代码,训练步骤为1万步


    acc_list = []
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
    

        for i in range(TRAIN_STEP):
            train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)
    
            eval_ops = [self.loss, self.acc, self.train_op]
            eval_ops_results = sess.run(eval_ops, feed_dict={
                self.x:train_data,
                self.y:train_label,
                self.keep_prob:0.7
            })
            loss_val, train_acc = eval_ops_results[0:2]
    
            acc_list.append(train_acc)
            if (i+1) % 100 == 0:
                acc_mean = np.mean(acc_list)
                print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
                    i+1,loss_val,train_acc,acc_mean
                ))
            if (i+1) % 1000 == 0:
                test_acc_list = []
                for j in range(TEST_STEP):
                    test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
                    acc_val = sess.run([self.acc],feed_dict={
                        self.x:test_data,
                        self.y:test_label,
                        self.keep_prob:1.0
                })
                test_acc_list.append(acc_val)
                print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
                    i+1, np.mean(test_acc_list)
                ))
        # 保存训练后的模型
        os.makedirs(SAVE_PATH, exist_ok=True)
        self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')



训练结果如下:

在这里插入图片描述

5.5 对猫狗图像进行2分类

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/990063.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringMVC的增删改查的案例

目录 前言: 1.总体思路: 2.前期准备 3.前台页面 前言: 我们今天来学习研究SpringMVC的增删改查,希望这篇博客能够帮助正在学习,工作的你们!!! 1.总体思路: 首先我们得…

在linux上挂载windows共享目录

挂载要求 非root用户(普通用户)能够读写windows共享目录,比如查看文件、创建文件、修改文件、删除文件 # 让普通用户也可以正常读写 uidvalue and gidvalue Set the owner and group of the root of the file system (default: uidgid0, bu…

《算法竞赛·快冲300题》每日一题:“附近的牛”

《算法竞赛快冲300题》将于2024年出版,是《算法竞赛》的辅助练习册。 所有题目放在自建的OJ New Online Judge。 用C/C、Java、Python三种语言给出代码,以中低档题为主,适合入门、进阶。 文章目录 题目描述题解C代码Java代码Python代码 “ 附…

学习笔记——Java入门第三季

1.1 Java异常简介 异常:有异于常态,和正常情况不一样,有错误出现,阻止当前方法或作用域。 异常处理:将出现的异常提示给编程人员与用户,使原本将要中断的程序继续运行或者退出。并且能够保存数据和释放资源…

独家!网络机顶盒什么牌子好?热门网络电视机顶盒排名TOP5

电视机搭配网络机顶盒看剧是很多人的消遣方式,不过在挑选网络机顶盒时很多人踩过雷,像卡顿、死机、广告多等问题频发,近来很多人咨询我网络机顶盒什么牌子好,我以销量为基础盘点了网络电视机顶盒排名,哪些品牌最受欢迎…

OpenResume简历解析官方技术文档(翻译)

OpenResume简历解析官方技术文档(翻译) 本文是对OpenResume建立解析器官方技术文档《Resume Parser Playground》的翻译。 相关连接: OpenResume官网 OpenResume简历解析器的官方地址 OpenResume的Github 简历解析测试环境 该测试环境展示了 OpenResume 简历…

新型人工智能技术让机器人的识别能力大幅提升

原创 | 文 BFT机器人 在德克萨斯大学达拉斯分校的智能机器人和视觉实验室里,一个机器人在桌子上移动一包黄油玩具。通过达拉斯分校计算机科学家团队开发的新系统,机器人每推动一次,就能学会识别物体。 新系统允许机器人多次推动物体&#xf…

后端/DFT/ATPG/PCB/SignOff设计常用工具/操作/流程及一些文件类型

目录 1.PD/DFT常用工具及流程 1.1 FC和ICC2 1.2 LC (Library compiler) 1.3 PrimeTime 1.4 Redhawk与PA 1.5 Calibre和物理验证PV 1.6 芯片设计流程 2.后端、DFT、ATPG的一些常见文件 2.1 LEF和DEF 2.2 ATPG的CTL和STIL 2.3 BSDL 2.4 IPXCT 3.PCB设计的一些工作和工…

宏定义天坑记录

宏定义天坑记录 事件原委与推理过程 在编译一个使用了Protobuf的项目时出现了如下报错 [ybVM-8-7-centos boost_searcher]$ make g -o http_server http_server.cc data/raw_html.pb.cc -stdc11 -lboost_system -lboost_filesystem -lpthread -ljsoncpp -lprotobuf In file…

JAVA学习-IDEA创建父子项目

JAVA培训-创建父子项目 一、创建父模块 1、new一个新项目,如下图所示: 2、由于这里是父级Maven项目,所以什么都不用选,只需要将SpringBoot版本选成稳定的版本即可。后面带(SNAPSHOT),代表版本…

如何理解focal loss/GIOU(yolo改进损失函数)

Focal Loss的公式如下: Focal Loss -α(1 - p)^γ * log 其中,α是正样本的调节因子,γ是控制难易样本权重分配的参数,p是模型预测的概率值。 根据公式,可以看出当样本属于困难样本时,(1 - p) 的值较大…

如何全方位了解购房信息?VR全景技术为您解答

在存量房贷利率下调政策下,房子逐渐回归到居住属性,在对于有购房刚需的客户来说,无疑是一大利好政策,此类客户有着强烈的看房购房需求,那么该如何全方位的了解购房信息呢? 房企通过VR全景展示、3D样板房、V…

论文阅读 (100):Simple Black-box Adversarial Attacks (2019ICML)

文章目录 1 概述1.1 要点1.2 代码1.3 引用 2 背景2.1 目标与非目标攻击2.2 最小化损失2.3 白盒威胁模型2.4 黑盒威胁模型 3 简单黑盒攻击3.1 算法3.2 Cartesian基3.3 离散余弦基3.4 一般基3.5 学习率 ϵ \epsilon ϵ3.6 预算 1 概述 1.1 要点 题目:简单黑盒对抗攻…

Vue中的图标

Vue中的图标 https://iconpark.oceanengine.com/official 官方教程&#xff1a;icon-park/vue - npm 1.IconPark 2.基本使用 下载 yarn add icon-park/vue --save 启动 yarn run serve 项目中引用 <script> import { TableFile } from icon-park/vue; export defa…

微信小程序遇到的一些问题及解决方法(设备安装)

微信小程序遇到的一些问题及解决方法 1、[js将字符串按照换行符分隔成数组](https://blog.csdn.net/pgzero/article/details/108730175)2、[vue byte数组](https://www.yzktw.com.cn/post/1202765.html)3、使用vant-weapp的文件上传capture"camera" 无法直接调用摄像…

渗透数据工程师

什么是渗透测试 渗透测试就是模拟真实黑客的攻击手法对目标网站或主机进行全面的安全评估&#xff0c;与黑客攻击不一样的是&#xff0c;渗透测试的目的是尽可能多地发现安全漏洞&#xff0c;而真实黑客攻击只要发现一处入侵点即可以进入目标系统。 一名优秀的渗透测试工程师也…

Web应用测试 —— Cookie,Session和Token

Cookie&#xff0c;Session 和 Token都是 Web 应用中常用的技术&#xff0c;它们在用户认证和状态管理中发挥了重要作用。下面是它们的基本定义和区别&#xff1a;Cookie Cookie 是服务器发送到用户浏览器并保存在浏览器上的一小块数据&#xff0c;它会在浏览器向同一服务器再次…

关于 Unity 连接 MuMu 模拟器上的 Unity Remote 5 的方法

在使用 Unity 开发 Android 的过程中&#xff0c;可以通过使用 Unity Remote 这个 app 来和真机连接&#xff0c;进而在真实环境下进行测试性能等工作&#xff0c;而本次则是由于其他问题引出的一个小坑&#xff0c;记录以备后续查询。 这次是由于在自学过程中遇到的一个工程&…

VM+Ubuntu+Xshell+Xftp安装教程

目录 VM17安装教程 检查网络连接 Ubuntu环境搭建 UBUNTU 系统配置 1、 SSH 服务器配置 服务端&#xff08;必须&#xff09; 1.安装 ssh 服务端 2.确认 sshserver 是否启动了&#xff08;看见 sshd 说明已启动&#xff09; 3.启动 sshserver 4.SSH 配置&#xff08;如果…

【Python】环境的搭建

前言 要想能够进行 Python 开发, 就需要搭建好 Python 的环境. 需要安装的环境主要是两个部分: 运行环境: Python开发环境: PyCharm 一、安装 Python 1.找到官方网站 官网&#xff1a;Welcome to Python.org 2.找到下载页面 点击download中的Windows 3.选择稳定版中的Win…