定义
 
     
      
       
        
         
         
           f 
          
         
           ( 
          
         
           x 
          
         
           ) 
          
         
           − 
          
         
           f 
          
         
           ( 
          
         
           a 
          
         
           ) 
          
         
         
         
           x 
          
         
           − 
          
         
           a 
          
         
        
       
      
        {f(x) - f(a)\over x -a} 
       
      
    x−af(x)−f(a) 表示 f(x) 函数从 x 到 a 的平均变化率,如果使 x 趋近于 a,则表示函数在 a 点的变化率。
若有以下极限存在(定义域不包含a):
  
      
       
        
         
          
          
            lim 
           
          
             
           
          
          
          
            x 
           
          
            → 
           
          
            a 
           
          
         
         
          
          
            f 
           
          
            ( 
           
          
            x 
           
          
            ) 
           
          
            − 
           
          
            f 
           
          
            ( 
           
          
            a 
           
          
            ) 
           
          
          
          
            x 
           
          
            − 
           
          
            a 
           
          
         
        
       
         \lim \limits_{x\rightarrow a} {{f(x) - f(a)\over x - a}} 
        
       
     x→alimx−af(x)−f(a)
 则称 f 于 a 处可导,并称这个极限为 f 于 a 处的导数,记作: 
     
      
       
        
        
          f 
         
         
          
         
           ′ 
          
         
        
       
         ( 
        
       
         a 
        
       
         ) 
        
       
      
        f^{'}(a) 
       
      
    f′(a),也可记作 
,或者  
     
      
       
        
         
         
           d 
          
         
           ( 
          
         
           f 
          
         
           ) 
          
         
         
         
           d 
          
         
           ( 
          
         
           x 
          
         
           ) 
          
         
        
       
         ( 
        
       
         a 
        
       
         ) 
        
       
      
        {d(f)\over d(x)}(a) 
       
      
    d(x)d(f)(a)
几何意义
导数可以表示函数的曲线上的切线斜率,如下图:
 
 当  
     
      
       
       
         Δ 
        
       
         x 
        
       
      
        \Delta x 
       
      
    Δx 无穷小时,则 P 点趋近于 P0 点,割线 T 的斜率趋于 P0 点切线的斜率,记作:
  
      
       
        
        
          t 
         
        
          a 
         
        
          n 
         
        
            
         
        
          α 
         
        
          = 
         
         
          
          
            Δ 
           
          
            y 
           
          
          
          
            Δ 
           
          
            x 
           
          
         
        
          = 
         
         
          
          
            f 
           
          
            ( 
           
          
            x 
           
          
            0 
           
          
            + 
           
          
            Δ 
           
          
            x 
           
          
            ) 
           
          
            − 
           
          
            f 
           
          
            ( 
           
          
            x 
           
          
            0 
           
          
            ) 
           
          
          
          
            Δ 
           
          
            x 
           
          
         
        
       
         tan\ \alpha = {\Delta y\over \Delta x} = {f(x0 + \Delta x) - f(x0) \over \Delta x} 
        
       
     tan α=ΔxΔy=Δxf(x0+Δx)−f(x0)
常用求导公式
- ( c ) ′ = 0 (c)^{'} = 0 (c)′=0
 - ( x α ) ′ = α x ( α − 1 ) (x^{\alpha})^{'} = \alpha x^{(\alpha -1)} (xα)′=αx(α−1)
 - s i n ( x ) ′ = c o s ( x ) sin(x)^{'} = cos(x) sin(x)′=cos(x)
 - c o s ( x ) ′ = − s i n ( x ) cos(x)^{'} = -sin(x) cos(x)′=−sin(x)
 - t a n ( x ) ′ = s e c 2 ( x ) tan(x)^{'} = sec^{2}(x) tan(x)′=sec2(x)
 - ( a x ) ′ = a x l n a (a^{x})^{'} = a^{x} ln\ a (ax)′=axln a
 - ( e x ) ′ = e x (e^{x})^{'} = e^{x} (ex)′=ex
 - ( l o g a x ) ′ = 1 x l n a (log_ax)^{'} = {1\over x ln \ a} (logax)′=xln a1
 - ( l n x ) ′ = 1 x (lnx)^{'} = {1\over x} (lnx)′=x1
 
基本求导法则
- ( u ± v ) = u ′ ± v ′ (u \pm v) = u^{'} \pm v^{'} (u±v)=u′±v′
 - ( c u ) ′ = c u ′ (cu)^{'} = cu^{'} (cu)′=cu′
 - ( u v ) ′ = u ′ v + u v ′ (uv)^{'} = u^{'}v+uv^{'} (uv)′=u′v+uv′
 - ( u v ) ′ = u ′ v − u v ′ v 2 ({u\over v})' = {{u^{'}v - uv^{'}} \over v^{2}} (vu)′=v2u′v−uv′
 - ( 1 v ) ′ = 1 v 2 ({1\over v})^{'} = {1 \over v^{2}} (v1)′=v21
 
复合函数求导
若有两个一元函数  
     
      
       
       
         f 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
      
        f(x) 
       
      
    f(x)、 
     
      
       
       
         g 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
      
        g(x) 
       
      
    g(x),可以将  
     
      
       
       
         g 
        
       
      
        g 
       
      
    g 的函数值作为  
     
      
       
       
         f 
        
       
      
        f 
       
      
    f 的自变量,得到一个新的函数称为  
     
      
       
       
         f 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
      
        f(x) 
       
      
    f(x)、 
     
      
       
       
         g 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
      
        g(x) 
       
      
    g(x) 的符合函数,记作  
     
      
       
       
         f 
        
       
         [ 
        
       
         g 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
         ] 
        
       
      
        f[g(x)] 
       
      
    f[g(x)],其导数为:
  
      
       
        
        
          f 
         
        
          [ 
         
        
          g 
         
        
          ( 
         
        
          x 
         
        
          ) 
         
        
          ] 
         
        
          = 
         
         
         
           f 
          
          
           
          
            ′ 
           
          
         
        
          [ 
         
        
          g 
         
        
          ( 
         
        
          x 
         
        
          ) 
         
        
          ] 
         
         
         
           g 
          
          
           
          
            ′ 
           
          
         
        
          ( 
         
        
          x 
         
        
          ) 
         
        
       
         f[g(x)] = f^{'}[g(x)]g^{'}(x) 
        
       
     f[g(x)]=f′[g(x)]g′(x)
例如对于  
     
      
       
       
         y 
        
       
         = 
        
       
         s 
        
       
         i 
        
       
         n 
        
       
         ( 
        
       
         2 
        
       
         x 
        
       
         ) 
        
       
      
        y = sin(2x) 
       
      
    y=sin(2x) 函数求导,可以分解为  
     
      
       
       
         g 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
         = 
        
       
         2 
        
       
         x 
        
       
      
        g(x) = 2x 
       
      
    g(x)=2x, 
     
      
       
       
         f 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
         = 
        
       
         s 
        
       
         i 
        
       
         n 
        
       
         [ 
        
       
         g 
        
       
         ( 
        
       
         x 
        
       
         ) 
        
       
         ] 
        
       
      
        f(x) = sin[g(x)] 
       
      
    f(x)=sin[g(x)],则:
  
      
       
        
         
         
           f 
          
          
           
          
            ′ 
           
          
         
        
          ( 
         
        
          x 
         
        
          ) 
         
        
          = 
         
        
          x 
         
        
          c 
         
        
          o 
         
        
          s 
         
        
          ( 
         
        
          2 
         
        
          x 
         
        
          ) 
         
        
       
         f^{'}(x) = xcos(2x) 
        
       
     f′(x)=xcos(2x)
偏导数
偏导数是指一个多元函数对其中一个自变量求导,而保持其他变量恒定,记作:
  
      
       
        
         
          
          
            ∂ 
           
          
            f 
           
          
          
          
            ∂ 
           
          
            x 
           
          
         
        
       
         \partial f \over \partial x 
        
       
     ∂x∂f
 例如对于  
     
      
       
       
         f 
        
       
         ( 
        
       
         x 
        
       
         , 
        
       
         y 
        
       
         ) 
        
       
         = 
        
        
        
          x 
         
        
          2 
         
        
       
         + 
        
        
        
          y 
         
        
          2 
         
        
       
         + 
        
       
         2 
        
       
         x 
        
       
         y 
        
       
      
        f(x,y) = x^{2} + y^{2} + 2xy 
       
      
    f(x,y)=x2+y2+2xy,对  
     
      
       
       
         x 
        
       
      
        x 
       
      
    x 求偏导数,可以将  
     
      
       
       
         y 
        
       
      
        y 
       
      
    y 看为常量:
  
      
       
        
         
          
          
            ∂ 
           
          
            f 
           
          
          
          
            ∂ 
           
          
            x 
           
          
         
        
          ( 
         
        
          x 
         
        
          , 
         
        
          y 
         
        
          ) 
         
        
          = 
         
        
          2 
         
        
          x 
         
        
          + 
         
        
          2 
         
        
          y 
         
        
       
         {\partial f \over \partial x}(x,y) = 2x + 2y 
        
       
     ∂x∂f(x,y)=2x+2y



















