来源:blog.csdn.net/qq_35387940/
article/details/127008965
-  
前言
 -  
正文
 -  
第一个小玩法
 -  
第二个小玩法
 
前言
本身我是一个比较偏向少使用Stream的人,因为调试比较不方便。
但是, 不得不说,stream确实会给我们编码带来便捷。
所以还是忍不住想分享一些奇技淫巧。
正文
Stream流 其实操作分三大块 :
-  
创建
 -  
处理
 -  
收集
 
我今天想分享的是 收集 这part的玩法。

OK,开始结合代码示例一起玩下:
lombok依赖引入,代码简洁一点:
<dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
    <version>1.18.20</version>
    <scope>compile</scope>
</dependency>
 
准备一个UserDTO.java
/**
 * @Author: JCccc
 * @Description:
 */
@Data
public class UserDTO {
 
    /**
     * 姓名
     */
    private  String name;
    /**
     * 年龄
     */
    private  Integer age;
    /**
     * 性别
     */
    private  String sex;
    /**
     * 是否有方向
     */
    private  Boolean hasOrientation;
 
}
 
准备一个模拟获取List的函数:
private static List<UserDTO> getUserList() {
    UserDTO userDTO = new UserDTO();
    userDTO.setName("小冬");
    userDTO.setAge(18);
    userDTO.setSex("男");
    userDTO.setHasOrientation(false);
    UserDTO userDTO2 = new UserDTO();
    userDTO2.setName("小秋");
    userDTO2.setAge(30);
    userDTO2.setSex("男");
    userDTO2.setHasOrientation(true);
    UserDTO userDTO3 = new UserDTO();
    userDTO3.setName("春");
    userDTO3.setAge(18);
    userDTO3.setSex("女");
    userDTO3.setHasOrientation(true);
    List<UserDTO> userList = new ArrayList<>();
    userList.add(userDTO);
    userList.add(userDTO2);
    userList.add(userDTO3);
    return userList;
}
 
第一个小玩法
将集合通过Stream.collect() 转换成其他集合/数组:
现在拿List<UserDTO> 做例子
转成 HashSet<UserDTO> :
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
HashSet<UserDTO> usersHashSet = usersStream.collect(Collectors.toCollection(HashSet::new));
 
转成 Set<UserDTO> usersSet :
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
Set<UserDTO> usersSet = usersStream.collect(Collectors.toSet());
 
转成 ArrayList<UserDTO> :
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
ArrayList<UserDTO> usersArrayList = usersStream.collect(Collectors.toCollection(ArrayList::new));
 
转成 Object[] objects :
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
Object[] objects = usersStream.toArray();
 
转成 UserDTO[] users :
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
UserDTO[] users = usersStream.toArray(UserDTO[]::new);
for (UserDTO user : users) {
    System.out.println(user.toString());
}
 
第二个小玩法
聚合(求和、最小、最大、平均值、分组)
找出年龄最大:
stream.max()
 
写法 1:
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
Optional<UserDTO> maxUserOptional = 
        usersStream.max((s1, s2) -> s1.getAge() - s2.getAge());
if (maxUserOptional.isPresent()) {
    UserDTO masUser = maxUserOptional.get();
    System.out.println(masUser.toString());
}
 
写法2:
List<UserDTO> userList = getUserList(); Stream<UserDTO> usersStream = userList.stream();
Optional<UserDTO> maxUserOptionalNew = usersStream.max(Comparator.comparingInt(UserDTO::getAge));
if (maxUserOptionalNew.isPresent()) {
    UserDTO masUser = maxUserOptionalNew.get();
    System.out.println(masUser.toString());
}
 
效果:

输出:
UserDTO(name=小秋, age=30, sex=男, hasOrientation=true)
 
找出年龄最小:
stream.min()
 
写法 1:
Optional<UserDTO> minUserOptional = usersStream.min(Comparator.comparingInt(UserDTO::getAge));
if (minUserOptional.isPresent()) {
    UserDTO minUser = minUserOptional.get();
    System.out.println(minUser.toString());
}
 
写法2:
Optional<UserDTO> min = usersStream.collect(Collectors.minBy((s1, s2) -> s1.getAge() - s2.getAge()));
 
求平均值:
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
Double avgScore = usersStream.collect(Collectors.averagingInt(UserDTO::getAge));
 
效果:

求和:
写法1:
Integer reduceAgeSum = usersStream.map(UserDTO::getAge).reduce(0, Integer::sum);
 
写法2:
int ageSumNew = usersStream.mapToInt(UserDTO::getAge).sum();
 
统计数量:
long countNew = usersStream.count();
 
简单分组:
按照具体年龄分组:
//按照具体年龄分组
Map<Integer, List<UserDTO>> ageGroupMap = usersStream.collect(Collectors.groupingBy((UserDTO::getAge)));
 
效果:

分组过程加写判断逻辑:
//按照性别 分为"男"一组  "女"一组
Map<Integer, List<UserDTO>> groupMap = usersStream.collect(Collectors.groupingBy(s -> {
    if (s.getSex().equals("男")) {
        return 1;
    } else {
        return 0;
    }
}));
 
效果:

多级复杂分组:
//多级分组
// 1.先根据年龄分组
// 2.然后再根据性别分组
Map<Integer, Map<String, Map<Integer, List<UserDTO>>>> moreGroupMap = usersStream.collect(Collectors.groupingBy(
   //1.KEY(Integer)             VALUE (Map<String, Map<Integer, List<UserDTO>>)
   UserDTO::getAge, Collectors.groupingBy(
           //2.KEY(String)             VALUE (Map<Integer, List<UserDTO>>)
           UserDTO::getSex, Collectors.groupingBy((userDTO) -> {
               if (userDTO.getSex().equals("男")) {
                   return 1;
               } else {
                   return 0;
               }
           }))));
 
效果:



















