1、和其他网络的比较

自注意力机制适合处理长文本,并行度好,在GPU上,CNN和Self-attention性能差不多,在TPU(Tensor Processing Uni)效果更好。

2、输入特点
原生的Transformer中nn.embeding输入需要非负整数,且范围在[0,100]之间(试出来的,未必准确),这是对不同长度的单词维度进行扩展,但是对于图像或者其他类别而言未必是最后一个维度大小不一致,可以参考ViT将nn.embeding换成nn.Linear,还需要修改mask.

自注意力机制适合处理长文本,并行度好,在GPU上,CNN和Self-attention性能差不多,在TPU(Tensor Processing Uni)效果更好。

原生的Transformer中nn.embeding输入需要非负整数,且范围在[0,100]之间(试出来的,未必准确),这是对不同长度的单词维度进行扩展,但是对于图像或者其他类别而言未必是最后一个维度大小不一致,可以参考ViT将nn.embeding换成nn.Linear,还需要修改mask.
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/918383.html
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!