矩阵可视化
矩阵可以很方面地展示事物两两之间的关系,这种关系可以通过矩阵可视化的方式进行简单监控。
定义一个通用类
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
class matrix_monitor():
    def __init__(self,min_color=-1,max_color=1,grad=5):
        self.min_color = min_color
        self.max_color = max_color
        self.grad = grad
        
    def fit_transform(self,Matrix):
        data = pd.DataFrame(Matrix)
        #设置色条的刻度:
        tick_=np.arange(self.min_color, self.max_color, self.grad).astype(float)
        #编辑做为参数的字典:
        dict_={'orientation':'vertical',"label":"color  \
        scale","drawedges":True,"ticklocation":"top","extend":"min", \
        "filled":True,"alpha":0.8,"cmap":"cmap","ticks":tick_}
        #将字典传入给参数cbar_kws:
        cmap=sns.heatmap(data,cbar_kws=dict_,center=0.5)
        plt.show()
调用类
import numpy as np
X = data=np.random.randn(100,10)
model = matrix_monitor()
model.fit_transform(X)
结果展示
 
![[C++ 网络协议编程] 域名及网络地址](https://img-blog.csdnimg.cn/7ca0f2b4ecde49f6bd1b06d0a380ddec.png)

















