可以看一下这篇我写的博客,了解一下大概:
RingBuffer 环形缓冲区----镜像指示位_呵呵哒( ̄▽ ̄)"的博客-CSDN博客
https://blog.csdn.net/weixin_41987016/article/details/132340883?spm=1001.2014.3001.5501
【回顾】缓冲区变满在环形缓冲区(ring buffer)中会实际发生,一般会有两种处理策略:
🐞① 覆盖老数据
🐞② 抛出“异常”
镜像指示位:缓冲区的长度如果是n,逻辑地址空间则为0至n-1;那么,规定n至2n-1为镜像逻辑地址空间。本策略规定读写指针的地址空间为0至2n-1,其中低半部分对应于常规的逻辑地址空间,高半部分对应于镜像逻辑地址空间。当指针值大于等于2n时,使其折返(wrapped)到ptr-2n。使用一位表示写指针或读指针是否进入了虚拟的镜像存储区:置位表示进入,不置位表示没进入还在基本存储区。
在读写指针的值相同情况下,如果二者的指示位相同,说明缓冲区为空;如果二者的指示位不同,说明缓冲区为满。这种方法优点是测试缓冲区满/空很简单;不需要做取余数操作;读写线程可以分别设计专用算法策略,能实现精致的并发控制。缺点是读写指针各需要额外的一位作为指示位。
如果缓冲区长度是2的幂,则本方法可以省略镜像指示位。如果读写指针的值相等,则缓冲区为空;如果读写指针相差n,则缓冲区为满,这可以用条件表达式(写指针==(读指针异或缓冲区长度))来判断。
----(来自百度百科)

一、基本步骤
1.数据结构
typedef struct ringbuffer
{
    uint8 *buffer_ptr;
    uint16 read_mirror : 1;
    uint16 read_index : 15;
    uint16 write_mirror : 1;
    uint16 write_index : 15;
    /* as we use msb of index as mirror bit, the size should be signed and
     * could only be positive. */
    uint16 size;
}ringbuff; 
2.缓冲区初始化
// 缓冲区初始化 
void rb_init(ringbuff *rb,uint8 *pool,uint16 size){
    /* initialize read and write index */
    rb->read_mirror = rb->read_index = 0;
    rb->write_mirror = rb->write_index = 0;
    /* set buffer pool and size */
    rb->buffer_ptr = pool;
    rb->size = DATA_ALIGN_DOWN(size, DATA_ALIGN_SIZE);
} 
3.创建一个ringbuffer
// 创建一个ringbuff
ringbuff* rb_create(uint16_t size) {
    ringbuff *rb;
    uint8_t *pool;
    size = DATA_ALIGN_DOWN(size, DATA_ALIGN_SIZE);// 大小做字节对齐
    rb = (ringbuff *)malloc(sizeof(ringbuff));// 申请内存
    if (rb == NULL)
        goto exit;
    pool = (uint8_t *)malloc(size);// 申请数据缓冲区内存
    if (pool == NULL) {
        free(rb);
        rb = NULL;
        goto exit;
    }
    rb_init(rb, pool, size);// 初始化 ringbuff
exit:
    return rb;
} 
4.销毁环形缓冲区
// 摧毁 ringbuff
void rb_destroy(ringbuff *rb) {   
    cout<<"销毁ringbuff~"<<endl;    
    free(rb->buffer_ptr);
    free(rb);// 释放申请的内存
} 
二、缓冲区中填充指定数据长度的数据
5. 缓冲区中填充指定数据长度的数据
举个例子:(当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据)

图1:当环形缓冲区为空时,读索引和写索引指向相同的位置(这里初始化为0);

图2:写操作:想往(rb->buffer_size = 8)缓冲区中写入15个元素:123456789ABCDEF,但写入的数据长度(length)超过缓冲区空闲长度(space_length)了。解决方法:RT-Thread(覆盖老数据策略)就是只截取后8位数据放入缓冲区。
可知length=15,space_length=8,满足length > space_length,让ptr = &ptr[length - rb->buffer_size]

图3:由图2的操作可以得到以上的环形缓冲区的数据内容分布

图4:读操作,读取缓冲区4个元素:89AB,修改读索引

图5:写操作,写入缓冲区4个元素:1234,修改写索引

图6:读操作,读取缓冲区4个元素:CDEF,修改读索引
🐞① 当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据
/* 缓冲区中填充指定数据长度的数据(当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据) */
uint16 rb_put_force(ringbuff *rb,const uint8 *ptr,uint16 length); 
// 强制往 ringbuff 写入数据
uint16 rb_put_force(ringbuff *rb,const uint8 *ptr,uint16 length) {
    uint16 space_length = 0;
    space_length = rb_space_len(rb);
    // cout<<"ptr: "<<ptr<<endl;
    // cout<<"space_length: "<<space_length<<endl;
    // cout<<"length: "<<length<<endl;
    if (length > space_length) { 
        ptr = &ptr[length - rb->size];
        length = rb->size;
    }
    // cout<<"ptr: "<<ptr<<endl;
    // cout<<"length: "<<length<<endl;
    if (rb->size - rb->write_index > length)
    {
        // cout<<"lailailailai"<<endl;
        /* read_index - write_index = empty space */
        memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
        /* this should not cause overflow because there is enough space for
         * length of data in current mirror */
        rb->write_index += length;
        if (length > space_length)
            rb->read_index = rb->write_index;
        return length;
    }
    memcpy(&rb->buffer_ptr[rb->write_index],
           &ptr[0],
           rb->size - rb->write_index);
    memcpy(&rb->buffer_ptr[0],
           &ptr[rb->size - rb->write_index],
           length - (rb->size - rb->write_index));
    /* we are going into the other side of the mirror */
    rb->write_mirror = ~rb->write_mirror;
    rb->write_index = length - (rb->size - rb->write_index);
    if (length > space_length)
    {
        rb->read_mirror = ~rb->read_mirror;
        rb->read_index = rb->write_index;
    }
    return length;
} 
🐞② 当缓冲区空间小于待写入的数据长度事不覆盖缓冲区原有数据
/* 缓冲区中填充指定数据长度的数据(当缓冲区空间小于待写入的数据长度事不覆盖缓冲区原有数据) */
uint16 rb_put(ringbuff *rb,const uint8 *ptr,uint16 length); 
// 往 ringbuff 写入数据
uint16 rb_put(ringbuff *rb,const uint8 *ptr,uint16 length) {
    uint16 size = 0;
    /* whether has enough space */
    size = rb_space_len(rb);// 获取 ring_buff 中可用空间的大小
    /* no space */
    if (size == 0)
        return 0;// 如果空间不够 直接返回
    /* drop some data */
    if (size < length) // 如果缓存区的空间不够保存这一次数据, 则把能够写入的这一部分数据写进去
        length = size;
	/* One-time write */
    if (rb->size - rb->write_index > length)
    {
        /* read_index - write_index = empty space */
        memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
        /* this should not cause overflow because there is enough space for
         * length of data in current mirror */
        rb->write_index += length;
        return length;// 返回写入数据的长度
    }
	/* two-time write */
    memcpy(&rb->buffer_ptr[rb->write_index],
           &ptr[0],
           rb->size - rb->write_index);
    memcpy(&rb->buffer_ptr[0],
           &ptr[rb->size - rb->write_index],
           length - (rb->size - rb->write_index));
    /* we are going into the other side of the mirror */
    rb->write_mirror = ~rb->write_mirror;
    rb->write_index = length - (rb->size - rb->write_index);
    return length;
} 
6. 缓冲区中获取指定长度的数据(返回实际获取数据的长度)
/* 缓冲区中获取指定长度的数据(返回实际获取数据的长度) */
uint16 rb_get(ringbuff *rb,uint8 *ptr,uint16 length); 
// 从 ringbuff 获取数据
uint16 rb_get(ringbuff *rb,uint8 *ptr,uint16 length) {
    uint16 size = 0;
    /* The length of the existing data in the buffer */
    size = rb_data_len(rb);
    /* no data */
    if (size == 0)
        return 0;
    /* less data */
    if (size < length)
        length = size;
    
    cout<<"size: "<<size<<" < "<<"length: " << length<<(size < length)<<endl;
    if (rb->size - rb->read_index > length)
    {
        /* copy all of data */
        memcpy(ptr, &rb->buffer_ptr[rb->read_index], length);
        /* this should not cause overflow because there is enough space for
         * length of data in current mirror */
        rb->read_index += length;
        return length;
    }
    memcpy(&ptr[0],
           &rb->buffer_ptr[rb->read_index],
           rb->size - rb->read_index);
    memcpy(&ptr[rb->size - rb->read_index],
           &rb->buffer_ptr[0],
           length - (rb->size - rb->read_index));
    /* we are going into the other side of the mirror */
    rb->read_mirror = ~rb->read_mirror;
    rb->read_index = length - (rb->size - rb->read_index);
    return length;
} 
7.测试和打印
void readprint(ringbuff* rb,uint8 buff[]) {
    cout<<"读取数据:";
    int i = 0;
    while(buff[i]!='\0') {
        cout<<buff[i++];
    }
    print(rb);
}
void writeprint(ringbuff* rb){
    for(int i=0;i<rb->size;i++){
        cout<<rb->buffer_ptr[i];
    }
    print(rb);
}
void test01() {
    ringbuff* rb = rb_create(9);
    const uint8 p[] = "123456789ABCDEF";
    uint32_t len = sizeof(p) / sizeof(char);
    
    cout<<"写入数据:"<<p<<endl;
    // rb_put(rb,p,len-1);
    rb_put_force(rb,p,len-1); 
    writeprint(rb);                       // 89ABCDEF
    uint8 saveBuff[20] = "";
    rb_get(rb,saveBuff,4);   // 89AB
    readprint(rb,saveBuff);
    
    const uint8 p1[] = "1234";
    cout<<"写入数据:"<<p1<<endl;
    rb_put_force(rb,p1,4);    // 1234CDEF
    writeprint(rb);
    memset(saveBuff,0,20);
    rb_get(rb,saveBuff,4);   // CDEF
    
    cout<<"读取数据:";
    readprint(rb,saveBuff);
    // 销毁ringbuff
    rb_destroy(rb);
} 
写入数据:123456789ABCDEF
89ABCDEF
rb->write_index: 0
rb->read_index: 0
rb->write_mirror: 1
rb->read_mirror: 0
rb_data_len: 8
rb_space_len: 0
size: 8 < length: 40
读取数据:89AB
rb->write_index: 0
rb->read_index: 4
rb->write_mirror: 1
rb->read_mirror: 0
rb_data_len: 4
rb_space_len: 4
写入数据:1234
1234CDEF
rb->write_index: 4
rb->read_index: 4
rb->write_mirror: 1
rb->read_mirror: 0
rb_data_len: 8
rb_space_len: 0
size: 8 < length: 40
读取数据:读取数据:CDEF
rb->write_index: 4
rb->read_index: 0
rb->write_mirror: 1
rb->read_mirror: 1
rb_data_len: 4
rb_space_len: 4
销毁ringbuff~ 
三、缓冲区中填充一个数据
5. 缓冲区中填充一个数据
举个例子:(当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据)

图1:依次存入1、2、3、4、5、6、7、8、A、B、C、D、E、F这些字符,直到缓冲区为满

图2:依次读出单个字符: 8、9、A、B
🐞① 当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据
/* 缓冲区中填充一个数据(当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据) */
uint16 rb_putchar_force(ringbuff *rb, const uint8 ch); 
// 往 ringbuff 强制写入一个字符
uint16 rb_putchar_force(ringbuff *rb, const uint8 ch) {
    enum rb_state old_state = rb_status(rb);// 获取状态
    rb->buffer_ptr[rb->write_index] = ch;// 写入数据
    /* flip mirror */
    if (rb->write_index == rb->size-1) {// 检查当前镜像是不是满了
        rb->write_mirror = ~rb->write_mirror; // 翻转写镜像
        rb->write_index = 0;// 翻转之后设置下标为 0
        if (old_state == RINGBUFFER_FULL) {// 如果 ringbuff 的状态是满
            rb->read_mirror = ~rb->read_mirror; // 翻转读镜像
            rb->read_index = rb->write_index; // 设置读下标和写下标一致
        }
    }else{
        rb->write_index++; // 写下标加1
        if (old_state == RINGBUFFER_FULL)
            rb->read_index = rb->write_index;// 如果满,设置读下标等于写下标
    }
    return 1; // 写入一个字符,返回1
} 
🐞② 当缓冲区空间小于待写入的数据长度事不覆盖缓冲区原有数据
/* 缓冲区中填充一个数据(当缓冲区空间小于待写入的数据长度事不覆盖缓冲区原有数据) */
uint16 rb_putchar(ringbuff *rb, const uint8 ch); 
// 往 ringbuff 中写入一个字符
uint16 rb_putchar(ringbuff *rb, const uint8 ch) {
    /* whether has enough space */
    if (!rb_space_len(rb)) // 没有足够的空间就直接返回了
        return 0;
    rb->buffer_ptr[rb->write_index] = ch;// 把这个字符写入到缓冲区的指定位置
    /* flip mirror */
    if (rb->write_index == rb->size-1) {// 检查写入这个字符后,当前镜像是否写满
        rb->write_mirror = ~rb->write_mirror;// 翻转镜像
        rb->write_index = 0;// 设置下标为0
    }else{
        rb->write_index++; // 下标加1
    }
    return 1;// 写入一个字符,返回 1
} 
6. 缓冲区中获取一个数据(返回实际获取数据的长度)
/* 缓冲区中获取一个数据(返回实际获取数据的长度) */
uint16 rb_getchar(ringbuff *rb, uint8 *ch); 
// 从ringbuff 获取一个字符
uint16 rb_getchar(ringbuff *rb,uint8 *ch) {
    /* ringbuffer is empty */
    if (!rb_data_len(rb)) // 检查 ringbuff 是否为空
        return 0;
    /* put character */
    *ch = rb->buffer_ptr[rb->read_index];// 获取当前读下标的数据
    if (rb->read_index == rb->size-1) {// 如果当前镜像满了
        rb->read_mirror = ~rb->read_mirror;// 翻转镜像
        rb->read_index = 0; // 设置读数据的下标为0
    } else {
        rb->read_index++; // 下标加1
    }
    return 1;// 读取一个字节,返回1
} 
7.测试和打印
#include "rb.h"
#include "rb.cpp"
void print(ringbuff *rb) {
    cout<<endl;
    cout<<"rb->write_index: "<<rb->write_index<<endl;
    cout<<"rb->read_index: "<<rb->read_index<<endl;
    cout<<"rb->write_mirror: "<<rb->write_mirror<<endl;
    cout<<"rb->read_mirror: "<<rb->read_mirror<<endl;
    cout<<"rb_data_len: "<<rb_data_len(rb)<<endl;
    cout<<"rb_space_len: "<<rb_space_len(rb)<<endl;
    cout<<endl;
}
void writeprint(ringbuff* rb){
    for(int i=0;i<rb->size;i++){
        cout<<rb->buffer_ptr[i];
    }
    print(rb);
}
void test02() {
    ringbuff* rb = rb_create(9);
    cout<<"rb->size: "<<rb->size<<endl;
    const uint8 p[] = "123456789ABCDEF";
    uint32_t len = sizeof(p) / sizeof(char);
    // cout<<len<<endl;
    cout<<"写入数据:"<<p<<endl;
    for(int i=0;i<len-1;i++) {
        // rb_putchar(rb,p[i]); 
        rb_putchar_force(rb,p[i]); 
    }
    writeprint(rb); // 9ABCDEF8                      
    uint8 singlechar = ' ';
    for(int i=0;i<4;i++) {
        rb_getchar(rb,&singlechar);
        cout<<"读单个字符: "<<singlechar<<endl;
    }
    print(rb);
    // 销毁ringbuff
    rb_destroy(rb);
} 
rb->size: 8
写入数据:123456789ABCDEF
9ABCDEF8
rb->write_index: 7
rb->read_index: 7
rb->write_mirror: 1
rb->read_mirror: 0
rb_data_len: 8
rb_space_len: 0
读单个字符: 8
读单个字符: 9
读单个字符: A
读单个字符: B
rb->write_index: 7
rb->read_index: 3
rb->write_mirror: 1
rb->read_mirror: 1
rb_data_len: 4
rb_space_len: 4
销毁ringbuff~ 
四、RT-Thread🦥小结
来自此文总结:ring buffer,一篇文章讲透它? - 知乎 (zhihu.com)
🦝 在多线程中,对同一个环形缓冲区进行读写操作时,需要加上锁,不然存在访问不安全问题;
🦝 当只有一个读线程和一个写线程时,用rb_put和rb_get进行读写操作缓冲区是线程安全的,无需加锁;但是rb_put_force不行,因为其可能对读写索引都进行操作的场景,这个时候再进行rb_get读操作,就是不安全访问;
🦝 读写指针已经在读写(rb_get和rb_put)过程中转换为了读写索引。所以read_index(读索引)和write_index(写索引)可以直接用来操作缓冲区,无需转换;
🦝 read_index 和write_index 的大小区间为[0,n−1],n为缓冲区大小;
🦝 RT-Thread的环形缓冲区不需要buffer大小为2的幂。

















