
柯西分布(Cauchy distribution)简介
The Cauchy distribution, also called the Lorentzian distribution or Lorentz distribution, is a continuous distribution describing resonance behavior. It also describes the distribution of horizontal distances at which a line segment tilted at a random angle cuts the x-axis.
Let theta represent the angle that a line, with fixed point of rotation, makes with the vertical axis, as shown above. Then:

The general Cauchy distribution and its cumulative distribution can be written as

where b is the half width at half maximum and m is the statistical median. In the illustration about, m=0.
The Cauchy distribution is implemented in the Wolfram Language as CauchyDistribution[m, Gamma/2].
The characteristic function is

柯西分布(Cauchy distribution)计算的源程序
using System;
namespace Legalsoft.Truffer
 {
     /// <summary>
     /// Cauchy distribution.
     /// </summary>
     public class Cauchydist
     {
         private double mu { get; set; }
         private double sig { get; set; }
        public Cauchydist(double mmu = 0.0, double ssig = 1.0)
         {
             this.mu = mmu;
             this.sig = ssig;
             if (sig <= 0.0)
             {
                 throw new Exception("bad sig in Cauchydist");
             }
         }
        public double p(double x)
         {
             return 0.318309886183790671 / (sig * (1.0 + Globals.SQR((x - mu) / sig)));
         }
        public double cdf(double x)
         {
             return 0.5 + 0.318309886183790671 * Math.Atan2(x - mu, sig);
         }
        public double invcdf(double p)
         {
             if (p <= 0.0 || p >= 1.0)
             {
                 throw new Exception("bad p in Cauchydist");
             }
             return mu + sig * Math.Tan(3.14159265358979324 * (p - 0.5));
         }
     }
 }
  



















