- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍦 参考文章地址: 365天深度学习训练营-第P3周:天气识别
- 🍖 作者:K同学啊
一、前期准备
1.设置GPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms,datasets
import matplotlib.pyplot as plt
import os,PIL,pathlibdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")
devicedevice(type='cuda')
2.导入数据
data_dir = './weather_photos/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split('\\')[1] for path in data_paths]
classNames['cloudy', 'rain', 'shine', 'sunrise']
train_transforms = transforms.Compose([
    transforms.Resize([224,224]),# resize输入图片
    transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换成tensor
    transforms.Normalize(
        mean = [0.485, 0.456, 0.406],
        std = [0.229,0.224,0.225]) # 从数据集中随机抽样计算得到
])
total_data = datasets.ImageFolder(data_dir,transform=train_transforms)
total_dataDataset ImageFolder
    Number of datapoints: 1125
    Root location: weather_photos
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=PIL.Image.BILINEAR)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           ) 
 
3.数据集划分
train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_size,test_size(900, 225)
train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset(<torch.utils.data.dataset.Subset at 0x246934b8df0>, <torch.utils.data.dataset.Subset at 0x246934b82b0>)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)for X,y in test_dl:
    print('Shape of X [N, C, H, W]:', X.shape)
    print('Shape of y:', y.shape)
    breakShape of X [N, C, H, W]: torch.Size([32, 3, 224, 224]) Shape of y: torch.Size([32])
二、构建简单的CNN网络
import torch.nn.functional as F
num_classes = 4  # 图片的类别数
class Network_bn(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0) 
        self.bn1 = nn.BatchNorm2d(12)                
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0) 
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv3 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn3 = nn.BatchNorm2d(24) 
        self.conv4 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)  
        # 分类网络
        self.fc1 = nn.Linear(24*50*50,num_classes)
     # 前向传播
     def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool(x)
        x = F.relu(self.bn3(self.conv3(x)))
        x = F.relu(self.bn4(self.conv4(x)))
        x = self.pool(x)
        x = x.view(-1,24*50*50)
        x = self.fc1(x)
       
        return x
    
model = Network_bn().to(device)
modelNetwork_bn( (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1)) (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1)) (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv3): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1)) (bn3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv4): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1)) (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (fc1): Linear(in_features=60000, out_features=4, bias=True) )
三、训练模型
1.设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
optSGD (
Parameter Group 0
    dampening: 0
    lr: 0.0001
    momentum: 0
    nesterov: False
    weight_decay: 0
) 
2.编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共900张图片
    num_batches = len(dataloader)   # 批次数目,29(900/32)
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches
    return train_acc, train_loss3.编写测试函数
与测试函数和训练函数大致相同,由于不需要进行梯度下降更新权重,所以不需要传入优化器。
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,8(255/32=8,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    test_acc  /= size
    test_loss /= num_batches
    return test_acc, test_loss4、正式训练
epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')Epoch: 1, Train_acc:61.3%, Train_loss:0.975, Test_acc:60.9%,Test_loss:0.961 ... Epoch:18, Train_acc:94.4%, Train_loss:0.255, Test_acc:87.6%,Test_loss:0.315 Epoch:19, Train_acc:93.8%, Train_loss:0.231, Test_acc:92.4%,Test_loss:0.226 Epoch:20, Train_acc:94.9%, Train_loss:0.187, Test_acc:92.0%,Test_loss:0.315 Done
四、结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()



















