目录
💥1 概述
📚2 运行结果
🎉3 参考文献
👨💻4 Matlab代码
💥1 概述
图像的边缘是指图像灰度急剧发生变化的不连续的地方,主要存在于目标和目标、背景和目标、不同色彩的区域之间,包含着图像的重要信息,在图像分析和理解中起着重要作用。
图像的边缘检测就是检测图像中灰度不连续的地方,是数字图像处理领域重要的分支之一。检测边缘的难点在于如何精确地定义边缘,随着研究的深入,学者提出了不同的边缘模型,多数边缘检测器的设计都基于某一种固定的边缘模型。例如,基于梯度的边缘检测方法将边缘视为灰度变化速率快的像素点集合,Konishi依据“边缘”和“非边缘”滤波器的统计规律来定义物体边缘",Peli 则提出基于视觉模型的算法3,将视觉可接受范围作为滤波频段,其阈值为人眼的对比敏感度。


📚2 运行结果

🎉3 参考文献
[1]徐艳蕾,赵继印,焦玉斌.噪声图像边缘检测方法的研究[J].计算机应用研究,2009,26(1):387-389
[2]刘闻,别红霞.基于蚁群算法的噪声图像边缘检测[J].软件,2013,34(12):256-259.
👨💻4 Matlab代码
部分代码:
function setNoiseImages(GUI_figure)
     global noises;
     imageNum = ceil(sqrt((length(noises)+1)));
     positionBase = 1/imageNum;
     shareData = guidata(GUI_figure);
     testImg = shareData.testImg;
     axes('Parent', GUI_figure,...
         'Units', 'normalized',...
         'Position',[0 1/2 1 1/2]*positionBase,...
         'Visible', 'off');
     imshow(imread(char(testImg.inImg)));
     for I = 1:length(noises)
         axes('Parent', GUI_figure,...
             'Units', 'normalized',...
             'Position',[(mod(I, imageNum)) floor((I)/imageNum)+1/2 1 1/2]*positionBase,...
             'Visible','off');
         imshow(imread(char(testImg.inNoise(I+1,:))));
     end
     text=uicontrol('Style','text',...
             'Units', 'normalized',...
             'Position',[3/7 19/20 1/7 1/20]*positionBase,...
             'String',strcat('Noise: 0%'));
     set(text,'BackGroundColor','red');
     for I = 1:imageNum
         text=uicontrol('Style','text',...
             'Units', 'normalized',...
             'Position',[(mod(I, imageNum))+3/7 floor((I)/imageNum)+19/20 1/7 1/20]*positionBase,...
             'String',['Noise: ', int2str(noises(I)*100), '%']);
         set(text,'BackGroundColor','red');
     end
     drawnow;
 end
function updateNGain2Slider(hObj,event,GUI_figure)
     global noiseWeights;
     val=get(hObj,'Value');
     noiseWeights(3)=val;
     updateNGain2Text();
 end
function updateNGain2Text()
     global noises;
     global noiseWeights;
     imageNum = ceil(sqrt((length(noises)+1)));
     positionBase = 1/imageNum;
     uicontrol('Style','text',...
         'Units', 'normalized',...
         'Position',[(imageNum-1) (imageNum-1)+7/20 3/10 1/20]*positionBase,...
         'String',['Noise Gain 2: ',num2str(noiseWeights(3),2)]);
 end
function updateGenerationsSlider(hObj,event)
     global generations;
     val=get(hObj,'Value');
     generations=round(val);
     updateGenerationsText();
 end
function updateGenerationsText()
     global noises;
     global generations;
     imageNum = ceil(sqrt((length(noises)+1)));
     positionBase = 1/imageNum;
     uicontrol('Style','text',...
         'Units', 'normalized',...
         'Position',[(imageNum-1) (imageNum-1)+17/20 3/10 1/20]*positionBase,...
         'String',['Generations: ',int2str(generations)]);
 end
function updatePopSizeSlider(hObj, event)
     global popSize;
     val=get(hObj,'Value');
     popSize=round(val);
     updatePopSizeText();
 end
function updatePopSizeText()
     global noises;
     global popSize;
     imageNum = ceil(sqrt((length(noises)+1)));
     positionBase = 1/imageNum;
     uicontrol('Style','text',...
         'Units', 'normalized',...
         'Position',[(imageNum-1) (imageNum-1)+16/20 3/10 1/20]*positionBase,...
         'String',['Pop Size: ',int2str(popSize)]);
 end
function updateBestMatrix(inMatrix)
     global noises;
     imageNum = ceil(sqrt((length(noises)+1)));
     positionBase = 1/imageNum;
     uitable('Units', 'normalized',...
         'Position', [(imageNum-1) (imageNum-1)+2/20 1 5/20]*positionBase,...
         'Data', inMatrix);
 end
function initialiseImages(GUI_figure)
     global noises;
     
     shareData = guidata(GUI_figure);
     img = shareData.img;
     testImg = shareData.testImg;
     
     % Generate and write noise and training images.
     for I=1:length(noises)
         writeLocation=strcat(testImg.inNoise(1), int2str(I), '.png');
         testImg.inNoise(I+1,:)=writeLocation;
         for II=1:5
             writeLocation=strcat(img(II).inNoise(1), int2str(I), '.png');
             img(II).inNoise(I+1,:)=writeLocation;
         end
     end
createNoiseImage(testImg, noises, 'gaussian');
完整代码:
链接:https://pan.baidu.com/s/1EaaNNZpD-eLt4OzUnSSGNg 
 提取码:22ns 
 --来自百度网盘超级会员V2的分享
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
👨💻4 Matlab代码
💥1 概述
图像的边缘是指图像灰度急剧发生变化的不连续的地方,主要存在于目标和目标、背景和目标、不同色彩的区域之间,包含着图像的重要信息,在图像分析和理解中起着重要作用。
图像的边缘检测就是检测图像中灰度不连续的地方,是数字图像处理领域重要的分支之一。检测边缘的难点在于如何精确地定义边缘,随着研究的深入,学者提出了不同的边缘模型,多数边缘检测器的设计都基于某一种固定的边缘模型。例如,基于梯度的边缘检测方法将边缘视为灰度变化速率快的像素点集合,Konishi依据“边缘”和“非边缘”滤波器的统计规律来定义物体边缘",Peli 则提出基于视觉模型的算法3,将视觉可接受范围作为滤波频段,其阈值为人眼的对比敏感度。


📚2 运行结果

🎉3 参考文献
[1]徐艳蕾,赵继印,焦玉斌.噪声图像边缘检测方法的研究[J].计算机应用研究,2009,26(1):387-389
[2]刘闻,别红霞.基于蚁群算法的噪声图像边缘检测[J].软件,2013,34(12):256-259.
👨💻4 Matlab代码
部分代码:
function setNoiseImages(GUI_figure)
     global noises;
     imageNum = ceil(sqrt((length(noises)+1)));
     positionBase = 1/imageNum;
     shareData = guidata(GUI_figure);
     testImg = shareData.testImg;
     axes('Parent', GUI_figure,...
         'Units', 'normalized',...
         'Position',[0 1/2 1 1/2]*positionBase,...
         'Visible', 'off');
     imshow(imread(char(testImg.inImg)));
     for I = 1:length(noises)
         axes('Parent', GUI_figure,...
             'Units', 'normalized',...
             'Position',[(mod(I, imageNum)) floor((I)/imageNum)+1/2 1 1/2]*positionBase,...
             'Visible','off');
         imshow(imread(char(testImg.inNoise(I+1,:))));
     end
     text=uicontrol('Style','text',...
             'Units', 'normalized',...
             'Position',[3/7 19/20 1/7 1/20]*positionBase,...
             'String',strcat('Noise: 0%'));
     set(text,'BackGroundColor','red');
     for I = 1:imageNum
         text=uicontrol('Style','text',...
             'Units', 'normalized',...
             'Position',[(mod(I, imageNum))+3/7 floor((I)/imageNum)+19/20 1/7 1/20]*positionBase,...
             'String',['Noise: ', int2str(noises(I)*100), '%']);
         set(text,'BackGroundColor','red');
     end
     drawnow;
 end
function updateNGain2Slider(hObj,event,GUI_figure)
     global noiseWeights;
     val=get(hObj,'Value');
     noiseWeights(3)=val;
     updateNGain2Text();
 end
function updateNGain2Text()
     global noises;
     global noiseWeights;
     imageNum = ceil(sqrt((length(noises)+1)));
     positionBase = 1/imageNum;
     uicontrol('Style','text',...
         'Units', 'normalized',...
         'Position',[(imageNum-1) (imageNum-1)+7/20 3/10 1/20]*positionBase,...
         'String',['Noise Gain 2: ',num2str(noiseWeights(3),2)]);
 end
function updateGenerationsSlider(hObj,event)
     global generations;
     val=get(hObj,'Value');
     generations=round(val);
     updateGenerationsText();
 end
function updateGenerationsText()
     global noises;
     global generations;
     imageNum = ceil(sqrt((length(noises)+1)));
     positionBase = 1/imageNum;
     uicontrol('Style','text',...
         'Units', 'normalized',...
         'Position',[(imageNum-1) (imageNum-1)+17/20 3/10 1/20]*positionBase,...
         'String',['Generations: ',int2str(generations)]);
 end
function updatePopSizeSlider(hObj, event)
     global popSize;
     val=get(hObj,'Value');
     popSize=round(val);
     updatePopSizeText();
 end
function updatePopSizeText()
     global noises;
     global popSize;
     imageNum = ceil(sqrt((length(noises)+1)));
     positionBase = 1/imageNum;
     uicontrol('Style','text',...
         'Units', 'normalized',...
         'Position',[(imageNum-1) (imageNum-1)+16/20 3/10 1/20]*positionBase,...
         'String',['Pop Size: ',int2str(popSize)]);
 end
function updateBestMatrix(inMatrix)
     global noises;
     imageNum = ceil(sqrt((length(noises)+1)));
     positionBase = 1/imageNum;
     uitable('Units', 'normalized',...
         'Position', [(imageNum-1) (imageNum-1)+2/20 1 5/20]*positionBase,...
         'Data', inMatrix);
 end
function initialiseImages(GUI_figure)
     global noises;
     
     shareData = guidata(GUI_figure);
     img = shareData.img;
     testImg = shareData.testImg;
     
     % Generate and write noise and training images.
     for I=1:length(noises)
         writeLocation=strcat(testImg.inNoise(1), int2str(I), '.png');
         testImg.inNoise(I+1,:)=writeLocation;
         for II=1:5
             writeLocation=strcat(img(II).inNoise(1), int2str(I), '.png');
             img(II).inNoise(I+1,:)=writeLocation;
         end
     end
createNoiseImage(testImg, noises, 'gaussian');





![[附源码]Python计算机毕业设计Django游戏论坛网站](https://img-blog.csdnimg.cn/199ab13370044d3d934fe01a229605e1.png)










![[附源码]Python计算机毕业设计Django在线项目管理](https://img-blog.csdnimg.cn/b82537c7679b4fcf8f5eca441af35ade.png)


