Postgresql实验系列(4)SIMD提升线性搜索性能24.5%(附带PG SIMD完整用例)

news2025/7/18 8:28:26

概要

接上一篇《Postgresql引入SIMD指令集》

PG引入SIMD执行集后具体有多大性能提升?本篇抽取PG的simd库,对比线性搜索场景的性能:

测试场景(文章最后提供完整程序)

构造一个存有14亿数字的数组

	uint32 cnt = 1410065408;
	uint32 *xids = (uint32 *) malloc(sizeof(uint32) * cnt);
	for (int i = 0; i < cnt; i++)
		xids[i] = rand();

场景一:使用SIMD查询一个数字是否在数组中,重复10次

// do 10 times!
	for (int i = 0; i < 10; i++)
		res = pg_lfind32(xid, xids, cnt);

场景二:直接遍历查询一个数字是否在数组中,重复10次

	// do 10 times!
	for (int i = 0; i < 10; i++)
		for (int i = 0; i < cnt; i++)
			if (xid == xids[i])
				res = true;

性能差距(on AMD EPYC 7K62 48-C Processor)

执行14亿数组查询,执行结果:

在这里插入图片描述

[mingjie@VM-130-23-centos ~/proj/simd][PGROOT99:9901]$ ./conftest 

sample: 1804289383 846930886 1681692777...
[use SIMD]find x among 1410065408 numbers: 27.480000 seconds
[use no SIMD]find x among 1410065408 numbers:  34.220000 seconds

结果:

  • 场景一:(使用SIMD从14亿数字中查询一个数是否存在) * 10次
    • 时间 = 27.480000 秒
  • 场景二:(直接遍历14亿数字查询一个数是否存在) * 10次
    • 时间 = 34.220000 秒

性能差距:SIMD在该场景有 24.5%的性能提升。


测试程序 & 编译方法

编译:

gcc -o conftest -Wall -g -ggdb -O0 -g3 -gdwarf-2 -msse4.2 main.c

main.c

/***************************************************/
#include <assert.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

/***************************************************/
#define Assert(condition) assert(condition)
#define true	((bool) 1)
#define false	((bool) 0)
typedef unsigned char uint8;	/* == 8 bits */
typedef unsigned short uint16;	/* == 16 bits */
typedef unsigned int uint32;	/* == 32 bits */
typedef unsigned char bool;
typedef size_t Size;
/***************************************************/
// #define USE_ASSERT_CHECKING

#include "simd.h"
/***************************************************/

/*
 * pg_lfind32
 *
 * Return true if there is an element in 'base' that equals 'key', otherwise
 * return false.
 */
static inline bool
pg_lfind32(uint32 key, uint32 *base, uint32 nelem)
{
	uint32		i = 0;

#ifndef USE_NO_SIMD

	/*
	 * For better instruction-level parallelism, each loop iteration operates
	 * on a block of four registers.  Testing for SSE2 has showed this is ~40%
	 * faster than using a block of two registers.
	 */
	const Vector32 keys = vector32_broadcast(key);	/* load copies of key */
	const uint32 nelem_per_vector = sizeof(Vector32) / sizeof(uint32);
	const uint32 nelem_per_iteration = 4 * nelem_per_vector;

	/* round down to multiple of elements per iteration */
	const uint32 tail_idx = nelem & ~(nelem_per_iteration - 1);

	for (i = 0; i < tail_idx; i += nelem_per_iteration)
	{
		Vector32	vals1,
					vals2,
					vals3,
					vals4,
					result1,
					result2,
					result3,
					result4,
					tmp1,
					tmp2,
					result;

		/* load the next block into 4 registers */
		vector32_load(&vals1, &base[i]);
		vector32_load(&vals2, &base[i + nelem_per_vector]);
		vector32_load(&vals3, &base[i + nelem_per_vector * 2]);
		vector32_load(&vals4, &base[i + nelem_per_vector * 3]);

		/* compare each value to the key */
		result1 = vector32_eq(keys, vals1);
		result2 = vector32_eq(keys, vals2);
		result3 = vector32_eq(keys, vals3);
		result4 = vector32_eq(keys, vals4);

		/* combine the results into a single variable */
		tmp1 = vector32_or(result1, result2);
		tmp2 = vector32_or(result3, result4);
		result = vector32_or(tmp1, tmp2);

		/* see if there was a match */
		if (vector32_is_highbit_set(result))
		{
			return true;
		}
	}
#endif							/* ! USE_NO_SIMD */

	/* Process the remaining elements one at a time. */
	for (; i < nelem; i++)
	{
		if (key == base[i])
			return true;
	}

	return false;
}
/***************************************************/

int main()
{
	clock_t start, finish;
	double  duration;

	uint32 xid = 11;
	uint32 cnt = 1410065408;
	uint32 *xids = (uint32 *) malloc(sizeof(uint32) * cnt);
	bool res = false;

	for (int i = 0; i < cnt; i++)
		xids[i] = rand();
	printf("sample: %d %d %d...\n", xids[0], xids[1], xids[2]);

	/***************************************************/
	/* SIMD */
	/***************************************************/

	start = clock();
	// do 10 times!
	for (int i = 0; i < 10; i++)
		res = pg_lfind32(xid, xids, cnt);
	finish = clock();  
	duration = (double)(finish - start) / CLOCKS_PER_SEC;
	printf( "[use SIMD]find x among %d numbers: %f seconds\n", cnt, duration );

	// printf("res: %d\n", res);
	/***************************************************/
	/* no SIMD */
	/***************************************************/

	start = clock();
	// do 10 times!
	for (int i = 0; i < 10; i++)
		for (int i = 0; i < cnt; i++)
			if (xid == xids[i])
				res = true;
	finish = clock();  
	duration = (double)(finish - start) / CLOCKS_PER_SEC;
	printf( "[use no SIMD]find x among %d numbers:  %f seconds\n", cnt, duration );

	// printf("res: %d\n", res);
	return res;
}

simd.h(from postgresql15)

/*-------------------------------------------------------------------------
 *
 * simd.h
 *	  Support for platform-specific vector operations.
 *
 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * src/include/port/simd.h
 *
 * NOTES
 * - VectorN in this file refers to a register where the element operands
 * are N bits wide. The vector width is platform-specific, so users that care
 * about that will need to inspect "sizeof(VectorN)".
 *
 *-------------------------------------------------------------------------
 */
#ifndef SIMD_H
#define SIMD_H

#if (defined(__x86_64__) || defined(_M_AMD64))
/*
 * SSE2 instructions are part of the spec for the 64-bit x86 ISA. We assume
 * that compilers targeting this architecture understand SSE2 intrinsics.
 *
 * We use emmintrin.h rather than the comprehensive header immintrin.h in
 * order to exclude extensions beyond SSE2. This is because MSVC, at least,
 * will allow the use of intrinsics that haven't been enabled at compile
 * time.
 */
#include <emmintrin.h>
#define USE_SSE2
typedef __m128i Vector8;
typedef __m128i Vector32;

#elif defined(__aarch64__) && defined(__ARM_NEON)
/*
 * We use the Neon instructions if the compiler provides access to them (as
 * indicated by __ARM_NEON) and we are on aarch64.  While Neon support is
 * technically optional for aarch64, it appears that all available 64-bit
 * hardware does have it.  Neon exists in some 32-bit hardware too, but we
 * could not realistically use it there without a run-time check, which seems
 * not worth the trouble for now.
 */
#include <arm_neon.h>
#define USE_NEON
typedef uint8x16_t Vector8;
typedef uint32x4_t Vector32;

#else
/*
 * If no SIMD instructions are available, we can in some cases emulate vector
 * operations using bitwise operations on unsigned integers.  Note that many
 * of the functions in this file presently do not have non-SIMD
 * implementations.  In particular, none of the functions involving Vector32
 * are implemented without SIMD since it's likely not worthwhile to represent
 * two 32-bit integers using a uint64.
 */
#define USE_NO_SIMD
typedef uint64 Vector8;
#endif

/* load/store operations */
static inline void vector8_load(Vector8 *v, const uint8 *s);
#ifndef USE_NO_SIMD
static inline void vector32_load(Vector32 *v, const uint32 *s);
#endif

/* assignment operations */
static inline Vector8 vector8_broadcast(const uint8 c);
#ifndef USE_NO_SIMD
static inline Vector32 vector32_broadcast(const uint32 c);
#endif

/* element-wise comparisons to a scalar */
static inline bool vector8_has(const Vector8 v, const uint8 c);
static inline bool vector8_has_zero(const Vector8 v);
static inline bool vector8_has_le(const Vector8 v, const uint8 c);
static inline bool vector8_is_highbit_set(const Vector8 v);
#ifndef USE_NO_SIMD
static inline bool vector32_is_highbit_set(const Vector32 v);
#endif

/* arithmetic operations */
static inline Vector8 vector8_or(const Vector8 v1, const Vector8 v2);
#ifndef USE_NO_SIMD
static inline Vector32 vector32_or(const Vector32 v1, const Vector32 v2);
static inline Vector8 vector8_ssub(const Vector8 v1, const Vector8 v2);
#endif

/*
 * comparisons between vectors
 *
 * Note: These return a vector rather than boolean, which is why we don't
 * have non-SIMD implementations.
 */
#ifndef USE_NO_SIMD
static inline Vector8 vector8_eq(const Vector8 v1, const Vector8 v2);
static inline Vector32 vector32_eq(const Vector32 v1, const Vector32 v2);
#endif

/*
 * Load a chunk of memory into the given vector.
 */
static inline void
vector8_load(Vector8 *v, const uint8 *s)
{
#if defined(USE_SSE2)
	*v = _mm_loadu_si128((const __m128i *) s);
#elif defined(USE_NEON)
	*v = vld1q_u8(s);
#else
	memcpy(v, s, sizeof(Vector8));
#endif
}

#ifndef USE_NO_SIMD
static inline void
vector32_load(Vector32 *v, const uint32 *s)
{
#ifdef USE_SSE2
	*v = _mm_loadu_si128((const __m128i *) s);
#elif defined(USE_NEON)
	*v = vld1q_u32(s);
#endif
}
#endif							/* ! USE_NO_SIMD */

/*
 * Create a vector with all elements set to the same value.
 */
static inline Vector8
vector8_broadcast(const uint8 c)
{
#if defined(USE_SSE2)
	return _mm_set1_epi8(c);
#elif defined(USE_NEON)
	return vdupq_n_u8(c);
#else
	return ~UINT64CONST(0) / 0xFF * c;
#endif
}

#ifndef USE_NO_SIMD
static inline Vector32
vector32_broadcast(const uint32 c)
{
#ifdef USE_SSE2
	return _mm_set1_epi32(c);
#elif defined(USE_NEON)
	return vdupq_n_u32(c);
#endif
}
#endif							/* ! USE_NO_SIMD */

/*
 * Return true if any elements in the vector are equal to the given scalar.
 */
static inline bool
vector8_has(const Vector8 v, const uint8 c)
{
	bool		result;

	/* pre-compute the result for assert checking */
#ifdef USE_ASSERT_CHECKING
	bool		assert_result = false;

	for (Size i = 0; i < sizeof(Vector8); i++)
	{
		if (((const uint8 *) &v)[i] == c)
		{
			assert_result = true;
			break;
		}
	}
#endif							/* USE_ASSERT_CHECKING */

#if defined(USE_NO_SIMD)
	/* any bytes in v equal to c will evaluate to zero via XOR */
	result = vector8_has_zero(v ^ vector8_broadcast(c));
#else
	result = vector8_is_highbit_set(vector8_eq(v, vector8_broadcast(c)));
#endif

	return result;
}

/*
 * Convenience function equivalent to vector8_has(v, 0)
 */
static inline bool
vector8_has_zero(const Vector8 v)
{
#if defined(USE_NO_SIMD)
	/*
	 * We cannot call vector8_has() here, because that would lead to a
	 * circular definition.
	 */
	return vector8_has_le(v, 0);
#else
	return vector8_has(v, 0);
#endif
}

/*
 * Return true if any elements in the vector are less than or equal to the
 * given scalar.
 */
static inline bool
vector8_has_le(const Vector8 v, const uint8 c)
{
	bool		result = false;

	/* pre-compute the result for assert checking */
#ifdef USE_ASSERT_CHECKING
	bool		assert_result = false;

	for (Size i = 0; i < sizeof(Vector8); i++)
	{
		if (((const uint8 *) &v)[i] <= c)
		{
			assert_result = true;
			break;
		}
	}
#endif							/* USE_ASSERT_CHECKING */

#if defined(USE_NO_SIMD)

	/*
	 * To find bytes <= c, we can use bitwise operations to find bytes < c+1,
	 * but it only works if c+1 <= 128 and if the highest bit in v is not set.
	 * Adapted from
	 * https://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
	 */
	if ((int64) v >= 0 && c < 0x80)
		result = (v - vector8_broadcast(c + 1)) & ~v & vector8_broadcast(0x80);
	else
	{
		/* one byte at a time */
		for (Size i = 0; i < sizeof(Vector8); i++)
		{
			if (((const uint8 *) &v)[i] <= c)
			{
				result = true;
				break;
			}
		}
	}
#else

	/*
	 * Use saturating subtraction to find bytes <= c, which will present as
	 * NUL bytes.  This approach is a workaround for the lack of unsigned
	 * comparison instructions on some architectures.
	 */
	result = vector8_has_zero(vector8_ssub(v, vector8_broadcast(c)));
#endif

	return result;
}

/*
 * Return true if the high bit of any element is set
 */
static inline bool
vector8_is_highbit_set(const Vector8 v)
{
#ifdef USE_SSE2
	return _mm_movemask_epi8(v) != 0;
#elif defined(USE_NEON)
	return vmaxvq_u8(v) > 0x7F;
#else
	return v & vector8_broadcast(0x80);
#endif
}

/*
 * Exactly like vector8_is_highbit_set except for the input type, so it
 * looks at each byte separately.
 *
 * XXX x86 uses the same underlying type for 8-bit, 16-bit, and 32-bit
 * integer elements, but Arm does not, hence the need for a separate
 * function. We could instead adopt the behavior of Arm's vmaxvq_u32(), i.e.
 * check each 32-bit element, but that would require an additional mask
 * operation on x86.
 */
#ifndef USE_NO_SIMD
static inline bool
vector32_is_highbit_set(const Vector32 v)
{
#if defined(USE_NEON)
	return vector8_is_highbit_set((Vector8) v);
#else
	return vector8_is_highbit_set(v);
#endif
}
#endif							/* ! USE_NO_SIMD */

/*
 * Return the bitwise OR of the inputs
 */
static inline Vector8
vector8_or(const Vector8 v1, const Vector8 v2)
{
#ifdef USE_SSE2
	return _mm_or_si128(v1, v2);
#elif defined(USE_NEON)
	return vorrq_u8(v1, v2);
#else
	return v1 | v2;
#endif
}

#ifndef USE_NO_SIMD
static inline Vector32
vector32_or(const Vector32 v1, const Vector32 v2)
{
#ifdef USE_SSE2
	return _mm_or_si128(v1, v2);
#elif defined(USE_NEON)
	return vorrq_u32(v1, v2);
#endif
}
#endif							/* ! USE_NO_SIMD */

/*
 * Return the result of subtracting the respective elements of the input
 * vectors using saturation (i.e., if the operation would yield a value less
 * than zero, zero is returned instead).  For more information on saturation
 * arithmetic, see https://en.wikipedia.org/wiki/Saturation_arithmetic
 */
#ifndef USE_NO_SIMD
static inline Vector8
vector8_ssub(const Vector8 v1, const Vector8 v2)
{
#ifdef USE_SSE2
	return _mm_subs_epu8(v1, v2);
#elif defined(USE_NEON)
	return vqsubq_u8(v1, v2);
#endif
}
#endif							/* ! USE_NO_SIMD */

/*
 * Return a vector with all bits set in each lane where the the corresponding
 * lanes in the inputs are equal.
 */
#ifndef USE_NO_SIMD
static inline Vector8
vector8_eq(const Vector8 v1, const Vector8 v2)
{
#ifdef USE_SSE2
	return _mm_cmpeq_epi8(v1, v2);
#elif defined(USE_NEON)
	return vceqq_u8(v1, v2);
#endif
}
#endif							/* ! USE_NO_SIMD */

#ifndef USE_NO_SIMD
static inline Vector32
vector32_eq(const Vector32 v1, const Vector32 v2)
{
#ifdef USE_SSE2
	return _mm_cmpeq_epi32(v1, v2);
#elif defined(USE_NEON)
	return vceqq_u32(v1, v2);
#endif
}
#endif							/* ! USE_NO_SIMD */

#endif							/* SIMD_H */

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/7164.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【python3】3.函数、类、模块

2022.11.15 本学习内容总结于莫烦python:3.函数、类、模块 https://mofanpy.com/tutorials/python-basic/interactive-python/function1. Function 函数 我常会重复写一些功能&#xff0c;比如查询文件时间&#xff0c;查询文件名字等等.后续我只需要引用到这个功能&#xff0…

Flink架构重要概念解析-超详理解

文章目录&#x1f48e; 1.1 系统架构1.1.1 整体构成1.1.2 作业管理器&#xff08;JobManager&#xff09;1.1.3 任务管理器&#xff08;TaskManager&#xff09;&#x1f680;1.2 作业提交流程1.2.1 高层级抽象视角1.2.2 独立模式&#xff08;Standalone&#xff09;1.2.3 YARN…

网页数据采集系统-怎样利用爬虫爬网站数据

随着社会不停地发展。人们也是越来越离不开互联网&#xff0c;今天小编就给大家盘点一下免费的网页数据采集系统&#xff0c;只需要点几下鼠标就能轻松爬取数据&#xff0c;不管是导出excel还是自动发布到网站都支持。详细参考图片一、二、三、四&#xff01; 企业人员 通过爬…

【直播预告】相机模型与标定——Real world超级公开课

导言 《Realworld超级公开课》是奥比中光3D视觉开发者社区打造的品牌活动之一&#xff0c;聚焦于3D视觉传感技术。每期课程邀请奥比中光及生态合作伙伴的技术专家&#xff0c;以线上线下相结合的授课形式&#xff0c;面向高校与人工智能企业的开发者&#xff0c;分享3D视觉技术…

线程的“结束”

【一道概率很高的面试题】&#xff1a; 如何优雅的结束一个线程&#xff1f; 上传一个大文件&#xff0c;正在处理费时的计算&#xff0c;如何优雅的结束这个线程呢&#xff1f; 【stop方法】&#xff1a; 【为何不建议使用stop呢&#xff1f;】&#xff1a; 因为很容易产生…

【附源码】计算机毕业设计JAVA成绩分析系统

【附源码】计算机毕业设计JAVA成绩分析系统 目运行 环境项配置&#xff1a; Jdk1.8 Tomcat8.5 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; JAVA mybati…

ORA-01940 无法删除当前已连接的用户之解决方案(脚本)

第一部分&#xff1a;配置数据库连接 1. 安装ODBC yum -y install unixODBC unixODBC-devel 2. 安装Oracle-instantclient #以下所有操作使用root账号执行 #创建目录 mkdir -p /opt/oracle cd /opt/oracle #下载odbc安装包 wget https://download.oracle.com/otn_software…

计算机毕业设计ssm+vue基本微信小程序的好物推荐分享系统

项目介绍 我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,好物分享系统小程序被用户普遍使用,为方便用户能够可以随时进行好物分享系统小程序的数据信息管理,特开发了基于好物分…

做食品能入驻Lazada吗?带你解锁东南亚当地热销及需求食品系列

中国的电商领域已经趋于饱和状态&#xff0c;中国食品电商领域已经呈现出存量的趋势了&#xff0c;例如&#xff1a;良品铺子、三只松鼠、百草味、口水娃、盼盼等国内知名品牌已经占比了国内大部分的市场份额&#xff0c;跟着巨头抢市场 无疑是很难的&#xff0c;那么中国这么多…

红外线热像仪的热成像质量介绍

摘要 毫无疑问&#xff0c;你在过去几年的某个时候&#xff0c;购买了数位相机来更换旧的胶卷相机。你的购买可能受到你的信念的影响&#xff0c;即在尝试判断提供的所有相机选择之间的图像质量时&#xff0c;像素数是最重要的规格。 任何阅读过消费者报告及其对数位相机的详…

CVE-2020-1472-ZeroLogon复现

CVE-2020-1472-ZeroLogon复现 简介 Netlogon使用的AES认证算法中的vi向量默认为0&#xff0c;导致攻击者可以绕过认证&#xff0c;同时其设置域控密码的远 程接口也使用了该函数&#xff0c;导致可以将域控中保存在AD中的管理员password设置为空 影响版本 Windows Server 2…

大牛耗时两年完成的实战手册。Elasticsearch实战,掌握这些刚刚好!

记得刚接触Elasticsearch的时候&#xff0c;没找啥资料&#xff0c;直接看了遍Elasticsearch的中文官方文档&#xff0c;中文文档很久没更新了&#xff0c;一直都是2.3的版本。最近又重新看了遍6.0的官方文档&#xff0c;由于官方文档介绍的内容比较多&#xff0c;每次看都很费…

10.基础备份与时间点恢复

目录 基础备份 时间点恢复 时间线 基础备份与时间线都是为了时间点恢复。 基础备份 基础备份的目的是备份当前的数据库集簇的快照&#xff0c;结合归档日志一起可以恢复至任意的时间点。 基础备份通过pg_start_backup命令开始为基础备份做准备&#xff0c;它会: 强制进行整…

[附源码]java毕业设计基于web的停车收费管理系统

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

dot net 杂谈之一

文章目录一、使用vscode开发.net core程序二、创建解决方案三、反射3.1 反射应用场景一3.2 反射应用场景二一、使用vscode开发.net core程序 安装如下插件&#xff1a; 1、vscode-solution-explorer 2、.NET Core Extension Pack 3、搜索nuget工具包并安装 二、创建解决方案…

股票l2数据接口中的逐单跟逐笔是什么意思?

股票l2数据接口中的逐单跟逐笔是什么意思&#xff1f; 【逐单统计】是按成交委托单资金流转情况来统计&#xff0c;特大资金买卖差大单资金买卖差中单资金买卖差小单资金买卖差0。是双向统计&#xff0c;对于每单交易同时统计买卖双方&#xff0c;一定程度上反应了资金在不同类…

Redis+AOP实现一个可通用的分布式锁——改进

目录前言方案改进思考与总结前言 上一次利用Redis分布式锁解决了一个并发问题&#xff1a; 上篇&#xff1a;利用Redis分布式锁解决集群服务器定时任务重复执行问题 代码可以直接从上篇文章中拿到&#xff0c;本篇文章仅对上次文章内容做进一步改进 主要思想是&#xff1a;利…

一篇读懂|Linux系统平均负载

我们经常会使用 top 命令来查看系统的性能情况&#xff0c;在 top 命令的第一行可以看到 load average 这个数据&#xff0c;如下图所示&#xff1a; load average 包含 3 列&#xff0c;分别表示 1 分钟、5 分钟和 15 分钟的 系统平均负载。 对于系统平均负载这个数值&#x…

红杉官网已删长文:伴随SBF一路走来的救世主情结(上)

每个创业公司都有一个创业故事。苹果是洛斯阿尔托斯车库里的两个黑客。谷歌是斯坦福大学宿舍里的两个研究生。而Alameda Research是伯克利公寓里做着加密货币交易的一个人。这个人叫山姆班克曼弗里德&#xff0c;朋友们都叫他SBF。然而&#xff0c;他所做的交易——最终催生了加…

ERP系统如何改善企业的业务?

ERP代表 "企业资源计划"&#xff0c;指的是企业用来计划和管理日常活动的一种软件或系统&#xff0c;如供应链、制造、服务、财务和其他流程。ERP系统可用于自动化和简化整个企业或组织的个别活动&#xff0c;如会计和采购、项目管理、客户关系管理、风险管理、合规和…