基于springboot+Redis的前后端分离项目之分布式锁-redission(五)-【黑马点评】

news2025/7/17 6:04:43

🎁🎁资源文件分享
链接:https://pan.baidu.com/s/1189u6u4icQYHg_9_7ovWmA?pwd=eh11
提取码:eh11

分布式锁-redission

  • 分布式锁-redission
    • 1 分布式锁-redission功能介绍
    • 2 分布式锁-Redission快速入门
    • 3 分布式锁-redission可重入锁原理
    • 4 分布式锁-redission锁重试和WatchDog机制
    • 5 分布式锁-redission锁的MutiLock原理

分布式锁-redission

1 分布式锁-redission功能介绍

基于setnx实现的分布式锁存在下面的问题:

重入问题:重入问题是指 获得锁的线程可以再次进入到相同的锁的代码块中,可重入锁的意义在于防止死锁,比如HashTable这样的代码中,他的方法都是使用synchronized修饰的,假如他在一个方法内,调用另一个方法,那么此时如果是不可重入的,不就死锁了吗?所以可重入锁他的主要意义是防止死锁,我们的synchronized和Lock锁都是可重入的。

不可重试:是指目前的分布式只能尝试一次,我们认为合理的情况是:当线程在获得锁失败后,他应该能再次尝试获得锁。

超时释放:我们在加锁时增加了过期时间,这样的我们可以防止死锁,但是如果卡顿的时间超长,虽然我们采用了lua表达式防止删锁的时候,误删别人的锁,但是毕竟没有锁住,有安全隐患。

主从一致性: 如果Redis提供了主从集群,当我们向集群写数据时,主机需要异步的将数据同步给从机,而万一在同步过去之前,主机宕机了,就会出现死锁问题。
在这里插入图片描述
那么什么是Redission呢?

Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务,其中就包含了各种分布式锁的实现。

Redission提供了分布式锁的多种多样的功能
在这里插入图片描述

2 分布式锁-Redission快速入门

引入依赖:

<dependency>
	<groupId>org.redisson</groupId>
	<artifactId>redisson</artifactId>
	<version>3.13.6</version>
</dependency>

配置Redisson客户端:

@Configuration
public class RedissonConfig {

    @Bean
    public RedissonClient redissonClient(){
        // 配置
        Config config = new Config();
        config.useSingleServer().setAddress("redis://127.0.0.1")
           
        // 创建RedissonClient对象
        return Redisson.create(config);
    }
}

如何使用Redission的分布式锁

@Resource
private RedissionClient redissonClient;

@Test
void testRedisson() throws Exception{
    //获取锁(可重入),指定锁的名称
    RLock lock = redissonClient.getLock("anyLock");
    //尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位
    boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);
    //判断获取锁成功
    if(isLock){
        try{
            System.out.println("执行业务");          
        }finally{
            //释放锁
            lock.unlock();
        }
    }
}

在 VoucherOrderServiceImpl

注入RedissonClient

@Resource
private RedissonClient redissonClient;

@Override
public Result seckillVoucher(Long voucherId) {
        // 1.查询优惠券
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        // 2.判断秒杀是否开始
        if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀尚未开始!");
        }
        // 3.判断秒杀是否已经结束
        if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀已经结束!");
        }
        // 4.判断库存是否充足
        if (voucher.getStock() < 1) {
            // 库存不足
            return Result.fail("库存不足!");
        }
        Long userId = UserHolder.getUser().getId();
        //创建锁对象 这个代码不用了,因为我们现在要使用分布式锁
        //SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
        RLock lock = redissonClient.getLock("lock:order:" + userId);
        //获取锁对象
        boolean isLock = lock.tryLock();
       
		//加锁失败
        if (!isLock) {
            return Result.fail("不允许重复下单");
        }
        try {
            //获取代理对象(事务)
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId);
        } finally {
            //释放锁
            lock.unlock();
        }
 }

3 分布式锁-redission可重入锁原理

在Lock锁中,他是借助于底层的一个voaltile的一个state变量来记录重入的状态的,比如当前没有人持有这把锁,那么state=0,假如有人持有这把锁,那么state=1,如果持有这把锁的人再次持有这把锁,那么state就会+1 ,如果是对于synchronized而言,他在c语言代码中会有一个count,原理和state类似,也是重入一次就加一,释放一次就-1 ,直到减少成0 时,表示当前这把锁没有被人持有。

在redission中,我们的也支持可重入锁

在分布式锁中,他采用hash结构用来存储锁,其中大key表示表示这把锁是否存在,用小key表示当前这把锁被哪个线程持有,所以接下来我们一起分析一下当前的这个lua表达式。

这个地方一共有3个参数

KEYS[1] : 锁名称

ARGV[1]: 锁失效时间

ARGV[2]: id + “:” + threadId; 锁的小key

exists: 判断数据是否存在 name:是lock是否存在,如果==0,就表示当前这把锁不存在

redis.call(‘hset’, KEYS[1], ARGV[2], 1);此时他就开始往redis里边去写数据 ,写成一个hash结构

Lock{

​ id + “:” + threadId : 1

}

如果当前这把锁存在,则第一个条件不满足,再判断

redis.call(‘hexists’, KEYS[1], ARGV[2]) == 1

此时需要通过大key+小key判断当前这把锁是否是属于自己的,如果是自己的,则进行。

redis.call(‘hincrby’, KEYS[1], ARGV[2], 1)

将当前这个锁的value进行+1 ,redis.call(‘pexpire’, KEYS[1], ARGV[1]); 然后再对其设置过期时间,如果以上两个条件都不满足,则表示当前这把锁抢锁失败,最后返回pttl,即为当前这把锁的失效时间。

如果看了前边的源码, 你会发现他会去判断当前这个方法的返回值是否为null,如果是null,则对应则前两个if对应的条件,退出抢锁逻辑,如果返回的不是null,即走了第三个分支,在源码处会进行while(true)的自旋抢锁。

"if (redis.call('exists', KEYS[1]) == 0) then " +
                  "redis.call('hset', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                  "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "return redis.call('pttl', KEYS[1]);"

在这里插入图片描述

4 分布式锁-redission锁重试和WatchDog机制

说明:由于已经说明了有关tryLock的源码解析以及其看门狗原理,所以在这里给大家分析lock()方法的源码解析,希望大家在学习过程中,能够掌握更多的知识

抢锁过程中,获得当前线程,通过tryAcquire进行抢锁,该抢锁逻辑和之前逻辑相同

1、先判断当前这把锁是否存在,如果不存在,插入一把锁,返回null

2、判断当前这把锁是否是属于当前线程,如果是,则返回null

所以如果返回是null,则代表着当前这哥们已经抢锁完毕,或者可重入完毕,但是如果以上两个条件都不满足,则进入到第三个条件,返回的是锁的失效时间,同学们可以自行往下翻一点点,你能发现有个while( true) 再次进行tryAcquire进行抢锁。

long threadId = Thread.currentThread().getId();
Long ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {
    return;
}

接下来会有一个条件分支,因为lock方法有重载方法,一个是带参数,一个是不带参数,如果带带参数传入的值是-1,如果传入参数,则leaseTime是他本身,所以如果传入了参数,此时leaseTime != -1 则会进去抢锁,抢锁的逻辑就是之前说的那三个逻辑。

if (leaseTime != -1) {
    return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}

如果是没有传入时间,则此时也会进行抢锁, 而且抢锁时间是默认看门狗时间 commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()

ttlRemainingFuture.onComplete((ttlRemaining, e) 这句话相当于对以上抢锁进行了监听,也就是说当上边抢锁完毕后,此方法会被调用,具体调用的逻辑就是去后台开启一个线程,进行续约逻辑,也就是看门狗线程。

RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(waitTime,
commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
    if (e != null) {
        return;
    }

    // lock acquired
    if (ttlRemaining == null) {
        scheduleExpirationRenewal(threadId);
    }
});
return ttlRemainingFuture;

此逻辑就是续约逻辑,注意看commandExecutor.getConnectionManager().newTimeout() 此方法

Method( new TimerTask() {},参数2 ,参数3 )

指的是:通过参数2,参数3 去描述什么时候去做参数1的事情,现在的情况是:10s之后去做参数一的事情

因为锁的失效时间是30s,当10s之后,此时这个timeTask 就触发了,他就去进行续约,把当前这把锁续约成30s,如果操作成功,那么此时就会递归调用自己,再重新设置一个timeTask(),于是再过10s后又再设置一个timerTask,完成不停的续约

那么大家可以想一想,假设我们的线程出现了宕机他还会续约吗?当然不会,因为没有人再去调用renewExpiration这个方法,所以等到时间之后自然就释放了。

private void renewExpiration() {
    ExpirationEntry ee = EXPIRATION_RENEWAL_MAP.get(getEntryName());
    if (ee == null) {
        return;
    }
    
    Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
        @Override
        public void run(Timeout timeout) throws Exception {
            ExpirationEntry ent = EXPIRATION_RENEWAL_MAP.get(getEntryName());
            if (ent == null) {
                return;
            }
            Long threadId = ent.getFirstThreadId();
            if (threadId == null) {
                return;
            }
            
            RFuture<Boolean> future = renewExpirationAsync(threadId);
            future.onComplete((res, e) -> {
                if (e != null) {
                    log.error("Can't update lock " + getName() + " expiration", e);
                    return;
                }
                
                if (res) {
                    // reschedule itself
                    renewExpiration();
                }
            });
        }
    }, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS);
    
    ee.setTimeout(task);
}

5 分布式锁-redission锁的MutiLock原理

为了提高redis的可用性,我们会搭建集群或者主从,现在以主从为例

此时我们去写命令,写在主机上, 主机会将数据同步给从机,但是假设在主机还没有来得及把数据写入到从机去的时候,此时主机宕机,哨兵会发现主机宕机,并且选举一个slave变成master,而此时新的master中实际上并没有锁信息,此时锁信息就已经丢掉了。
在这里插入图片描述
为了解决这个问题,redission提出来了MutiLock锁,使用这把锁咱们就不使用主从了,每个节点的地位都是一样的, 这把锁加锁的逻辑需要写入到每一个主丛节点上,只有所有的服务器都写入成功,此时才是加锁成功,假设现在某个节点挂了,那么他去获得锁的时候,只要有一个节点拿不到,都不能算是加锁成功,就保证了加锁的可靠性。
在这里插入图片描述
那么MutiLock 加锁原理是什么呢?笔者画了一幅图来说明

当我们去设置了多个锁时,redission会将多个锁添加到一个集合中,然后用while循环去不停去尝试拿锁,但是会有一个总共的加锁时间,这个时间是用需要加锁的个数 * 1500ms ,假设有3个锁,那么时间就是4500ms,假设在这4500ms内,所有的锁都加锁成功, 那么此时才算是加锁成功,如果在4500ms有线程加锁失败,则会再次去进行重试.

在这里插入图片描述

后记
👉👉💕💕美好的一天,到此结束,下次继续努力!欲知后续,请看下回分解,写作不易,感谢大家的支持!! 🌹🌹🌹

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/703934.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

NoSQL之Redis优化(一)

Redis的高可用 一、Redis 持久化RDB 持久化AOF 持久化RDB和AOF的优缺点 二、Redis 性能管理内存碎片如何产生的&#xff1f;解决碎片率大的问题&#xff1a;内存使用率内回收key 在web服务器中&#xff0c;高可用是指服务器可以正常访问的时间&#xff0c;衡量的标准是在多长时…

【Java可执行命令】(四)反编译工具javap:深入解析应用程序反编译工具javap ~

Java可执行命令详解之javap 1️⃣ 概念2️⃣ 优势和缺点3️⃣ 使用3.1 语法格式3.1.1 可选参数&#xff1a;-l3.1.2 可选参数&#xff1a;-c3.1.3 可选参数&#xff1a;-s3.1.4 可选参数&#xff1a;-verbose3.1.5 可选参数&#xff1a;-version 4️⃣ 应用场景5️⃣ 注意事项&…

6.21、设计模式 单例设计模式

1 设计模式&#xff08;Design pattern&#xff09; 代表了最佳的实践&#xff0c;通常被有经验的面向对象的软件开发人员所采用。设计模式是软件开发人员在软件开发过程中面临的一般问题的解决方案。这些解决方案是众多软件开发人员经过相当长的一段时间的试验和错误总结出来…

好用又智能笔记类工具有哪些?

在工作和生活中&#xff0c;我们经常面临大量信息和任务需要记录和整理。好用又智能的笔记类工具成为了办公人士提高工作效率和组织信息的必备利器。 敬业签笔记工具支持分类记录笔记&#xff0c;可以根据不同的主题或项目进行整理。无论是工作笔记、学习笔记还是个人生活记录…

OpenFeign——请求其他服务时传递token信息

文章目录 前言准备流程初测定义nacos-product子服务定义服务的消费方 cloudalibaba-openfeign-server初步测试结论 设置cloudalibaba-openfeign-server中的feign总结 前言 在实际开发过程中&#xff0c;服务与服务之间都会有比较频繁的通信操作。其次不同用户所需要查询的数据…

【正点原子STM32连载】 第四十七章 SRAM实验 摘自【正点原子】STM32F103 战舰开发指南V1.2

1&#xff09;实验平台&#xff1a;正点原子stm32f103战舰开发板V4 2&#xff09;平台购买地址&#xff1a;https://detail.tmall.com/item.htm?id609294757420 3&#xff09;全套实验源码手册视频下载地址&#xff1a; http://www.openedv.com/thread-340252-1-1.html# 第四…

使用inno打包程序流程

1:配置iss文件 ​​​​​​​ 2编译 3.生成安装包文件安装

浅谈建筑项目中的智能照明系统的设计与研究

【摘要】&#xff1a;建筑智能照明工程中智能照明控制系统发展迅速&#xff0c;具有舒适性和节能性两方面优势。智能照明控制系统已经处于模块化高速发展阶段&#xff0c;如今更好的控制方案成为制约系统发展的瓶颈。文章在研究了国内外智能照明系统的基础上&#xff0c;从照明…

【CSS】nth:children以及浏览器内核webkit使用(滚动条样式修改)

&#x1f609;博主&#xff1a;初映CY的前说(前端领域) ,&#x1f4d2;本文核心&#xff1a;nth:children以及浏览器中的webkit使用 前言&#xff1a;在页面的编写中使用了多个标签通常有需求去处理下特殊的样式&#xff0c;我们常见做法是给我们的标签加上一个类或者通过标签选…

【微服务】什么是微服务?-- 全面了解微服务架构

What is Microservices — Edureka 您有没有想过&#xff0c;什么是微服务以及扩展行业如何与它们集成&#xff0c;同时构建应用程序以满足客户的期望&#xff1f; 要了解什么是微服务&#xff0c;您必须了解如何将单体应用程序分解为独立打包和部署的小型微型应用程序。本文将…

力扣 -- 91.解码方法

题目链接&#xff1a;91. 解码方法 - 力扣&#xff08;LeetCode&#xff09; 以下是用动态规划的思想解决这道题目&#xff0c;如果对动态规划五部曲的含义还不是很清楚的老铁可以看看本专栏的第一题动规(10条消息) 力扣 -- 746. 使用最小花费爬楼梯_KOBE 0824 BRYANT的博客-…

软件测试编写文档模板【附文档模板】

一、测试岗位必备的文档 在一个常规的软件测试流程中&#xff0c;会涉及到测试计划、测试方案、测试用例、测试报告的编写&#xff0c;这些文档也是软件测试岗位必须掌握的文档类型。 1、测试计划 测试计划是组织管理层面的文件&#xff0c;从组织管理的角度对一次测试活动进…

华为OD机试真题 Python实现【最小的调整次数】【2023Q1 100分】

目录 一、题目描述二、输入描述三、输出描述四、补充说明五、解题思路六、Python算法源码七、效果展示1、输入2、输出3、说明 一、题目描述 有一个特异性的双端队列&#xff0c;该队列可以从头部或尾部添加数据&#xff0c;但是只能从头部移出数据。 小A依次执行2n个指令往队…

uboot详解(嵌入式学习)

uboot详解 概念详解扩展Windows的“uboot” 概念 U-Boot&#xff08;Unified Bootloader&#xff09;是一个开源的嵌入式系统引导加载程序&#xff0c;也是一种通用的引导加载程序。它主要用于嵌入式系统的启动过程&#xff0c;负责初始化硬件设备、加载操作系统内核和启动应用…

Android Studio 使用 Build Variants 配置测试/正式环境域名等字段

拿测试环境域名和正式环境域名举例&#xff1a;在项目调试和发版过程中可以通过频繁地注释和解开注释来切换正式环境域名和测试环境域名&#xff0c;但此方法过于繁琐&#xff1b;所以可以使用Android Studio的Build Variants根据切换环境来替我们执行切换环境的操作。 在项目…

《HelloGitHub》第 87 期

兴趣是最好的老师&#xff0c;HelloGitHub 让你对编程感兴趣&#xff01; 简介 HelloGitHub 分享 GitHub 上有趣、入门级的开源项目。 https://github.com/521xueweihan/HelloGitHub 这里有实战项目、入门教程、黑科技、开源书籍、大厂开源项目等&#xff0c;涵盖多种编程语言 …

可视化对讲广播电话可以用在哪里

可视化对讲广播电话可以用在哪里 可视化对讲广播电话&#xff1a;无处不在的沟通利器 【工地现场】 在矗立的高楼上&#xff0c;工地上忙碌的工人们使用着可视化对讲广播电话。借助高清画面和清晰音频&#xff0c;工作人员可以实时观察工地情况&#xff0c;更好地协调工作&a…

【【51单片机实现LED点阵屏幕和动画显示】】

LED点阵屏幕和驱动代码 我们先搞清楚&#xff17;&#xff14;HC&#xff15;&#xff19;&#xff15;的原理 &#xff53;&#xff46;&#xff52; 特殊功能寄存器声明 &#xff53;&#xff42;&#xff49;&#xff54; 特殊位声明 就举个例子&#xff0c;我们在之前的…

Linux后台运行Python脚本

Linux后台运行Python脚本命令&#xff1a; nohup python webui.py > myout.file 2>&1 &nohup&#xff1a;nohup命令用于不挂断地运行命令python&#xff1a;执行python代码的命令webui.py: python程序脚本源代码>: 打印程序输出信息到指定日志文件中myout.fi…

[vue]使用Element--Tree 树形控件使用props解决自定义slot-scope=“{ node, data }“的对象问题

在未用props定义的情况下&#xff0c;slot-scope"{ node, data }"解析data对象只有data含有lable和children才能识别出内容和子节点 当我获取的数据如下&#xff0c;没有lable和children&#xff0c;使用的是name和childList&#xff0c;如下图所示&#xff1a; 注意…