(基于python)简单实现接口自动化测试

news2025/5/26 10:35:27

一、简介

本文从一个简单的登录接口测试入手,一步步调整优化接口调用姿势,然后简单讨论了一下接口测试框架的要点,最后介绍了一下我们目前正在使用的接口测试框架pithy。期望读者可以通过本文对接口自动化测试有一个大致的了解。

二、引言

为什么要做接口自动化测试?

在当前互联网产品迭代频繁的背景下,回归测试的时间越来越少,很难在每个迭代都对所有功能做完整回归。但接口自动化测试因其实现简单、维护成本低,容易提高覆盖率等特点,越来越受重视。

为什么要自己写框架呢?

使用requets + unittest很容易实现接口自动化测试,而且requests的api已经非常人性化,非常简单,但通过封装以后(特别是针对公司内特定接口),再加上对一些常用工具的封装,可以进一步提高业务脚本编写效率。


三、环境准备

确保本机已安装python2.7以上版本,然后安装如下库

pip install flask
pip install requests

后面我们会使用flask写一个用来测试的接口,使用requests去测试


四、测试接口准备

下面使用flask实现两个http接口,一个登录,另外一个查询详情,但需要登录后才可以,新建一个demo.py文件(注意,不要使用windows记事本),把下面代码copy进去,然后保存、关闭

接口代码

#!/usr/bin/python
# coding=utf-8
from flask import Flask, request, session, jsonify
 
USERNAME = 'admin'
PASSWORD = '123456'
 
app = Flask(__name__)
app.secret_key = 'pithy'
 
 
@app.route('/login', methods=['GET', 'POST'])
def login():
    error = None
    if request.method == 'POST':
        if request.form['username'] != USERNAME:
            error = 'Invalid username'
        elif request.form['password'] != PASSWORD:
            error = 'Invalid password'
        else:
            session['logged_in'] = True
            return jsonify({'code': 200, 'msg': 'success'})
    return jsonify({'code': 401, 'msg': error}), 401
 
 
@app.route('/info', methods=['get'])
def info():
    if not session.get('logged_in'):
        return jsonify({'code': 401, 'msg': 'please login !!'})
    return jsonify({'code': 200, 'msg': 'success', 'data': 'info'})
 
if __name__ == '__main__':
    app.run(debug=True)
 

最后执行如下命令

python demo.py

响应如下

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat

大家可以看到服务已经起起来了

接口信息

登录接口

  • 请求url
 /login
  • 请求方法
 post
  • 请求参数
参数名称参数类型参数说明
usernameString登录名称
passwordString

登录密码

  • 响应信息
参数名称参数类型参数说明
codeInteger结果code
msgString结果信息

详情接口

  • 请求url
/info
  • 请求方法
get
  • 请求cookies
参数名称参数类型参数说明
sessionStringsession
  • 响应信息
参数名称参数类型参数说明
codeInteger结果code
msgString结果信息
dataString数据信息

五、编写接口测试

测试思路

  • 使用requests [使用链接] 库模拟发送HTTP请求
  • 使用python标准库里unittest写测试case

脚本实现

#!/usr/bin/python
# coding=utf-8
import requests
import unittest
 
 
class TestLogin(unittest.TestCase):
 
    @classmethod
    def setUpClass(cls):
        cls.login_url = 'http://127.0.0.1:5000/login'
        cls.info_url = 'http://127.0.0.1:5000/info'
        cls.username = 'admin'
        cls.password = '123456'
 
    def test_login(self):
        """
        测试登录
        """
        data = {
            'username': self.username,
            'password': self.password
        }
 
        response = requests.post(self.login_url, data=data).json()
 
        assert response['code'] == 200
        assert response['msg'] == 'success'
 
    def test_info(self):
        """
        测试info接口
        """
 
        data = {
            'username': self.username,
            'password': self.password
        }
 
        response_cookies = requests.post(self.login_url, data=data).cookies
        session = response_cookies.get('session')
        assert session
 
        info_cookies = {
            'session': session
        }
 
        response = requests.get(self.info_url, cookies=info_cookies).json()
        assert response['code'] == 200
        assert response['msg'] == 'success'
        assert response['data'] == 'info'
 
 

六、优化

封装接口调用

写完这个测试登录脚本,你或许会发现,在整个项目的测试过程,登录可能不止用到一次,如果每次都这么写,会不会太冗余了? 对,确实太冗余了,下面做一下简单的封装,把登录接口的调用封装到一个方法里,把调用参数暴漏出来,示例脚本如下:

#!/usr/bin/python
# coding=utf-8
import requests
import unittest
try:
    from urlparse import urljoin
except ImportError:
    from urllib.parse import urljoin
 
 
class DemoApi(object):
 
    def __init__(self, base_url):
        self.base_url = base_url
 
    def login(self, username, password):
        """
        登录接口
        :param username: 用户名
        :param password: 密码
        """
        url = urljoin(self.base_url, 'login')
        data = {
            'username': username,
            'password': password
        }
 
        return requests.post(url, data=data).json()
 
    def get_cookies(self, username, password):
        """
        获取登录cookies
        """
        url = urljoin(self.base_url, 'login')
        data = {
            'username': username,
            'password': password
        }
 
        return requests.post(url, data=data).cookies
 
    def info(self, cookies):
        """
        详情接口
        """
        url = urljoin(self.base_url, 'info')
        return requests.get(url, cookies=cookies).json()
 
 
class TestLogin(unittest.TestCase):
 
    @classmethod
    def setUpClass(cls):
        cls.base_url = 'http://127.0.0.1:5000'
        cls.username = 'admin'
        cls.password = '123456'
        cls.app = DemoApi(cls.base_url)
 
    def test_login(self):
        """
        测试登录
        """
        response = self.app.login(self.username, self.password)
        assert response['code'] == 200
        assert response['msg'] == 'success'
 
    def test_info(self):
        """
        测试获取详情信息
        """
        cookies = self.app.get_cookies(self.username, self.password)
        response = self.app.info(cookies)
        assert response['code'] == 200
        assert response['msg'] == 'success'
        assert response['data'] == 'info'
 

OK,在这一个版本中,我们不但在把登录接口的调用封装成了一个实例方法,实现了复用,而且还把host(self.base_url)提取了出来,但问题又来了,登录之后,登录接口的http响应会把session以 cookie的形式set到客户端,之后的接口都会使用此session去请求,还有,就是在接口调用过程中,希望可以把日志打印出来,以便调试或者出错时查看。
好吧,我们再来改一版。
 

保持cookies&增加log信息

使用requests库里的同一个Session对象(它也会在同一个Session 实例发出的所有请求之间保持 cookie),即可解决上面的问题,示例代码如下:

#!/usr/bin/python
# coding=utf-8
import unittest
from pprint import pprint
from requests.sessions import Session
try:
    from urlparse import urljoin
except ImportError:
    from urllib.parse import urljoin
 
 
class DemoApi(object):
 
    def __init__(self, base_url):
        self.base_url = base_url
        # 创建session实例
        self.session = Session()
 
    def login(self, username, password):
        """
        登录接口
        :param username: 用户名
        :param password: 密码
        """
        url = urljoin(self.base_url, 'login')
        data = {
            'username': username,
            'password': password
        }
 
        response = self.session.post(url, data=data).json()
        print('\n*****************************************')
        print(u'\n1、请求url: \n%s' % url)
        print(u'\n2、请求头信息:')
        pprint(self.session.headers)
        print(u'\n3、请求参数:')
        pprint(data)
        print(u'\n4、响应:')
        pprint(response)
        return response
 
    def info(self):
        """
        详情接口
        """
        url = urljoin(self.base_url, 'info')
        response = self.session.get(url).json()
 
        print('\n*****************************************')
        print(u'\n1、请求url: \n%s' % url)
        print(u'\n2、请求头信息:')
        pprint(self.session.headers)
        print(u'\n3、请求cookies:')
        pprint(dict(self.session.cookies))
        print(u'\n4、响应:')
        pprint(response)
        return response
 
 
class TestLogin(unittest.TestCase):
 
    @classmethod
    def setUpClass(cls):
        cls.base_url = 'http://127.0.0.1:5000'
        cls.username = 'admin'
        cls.password = '123456'
        cls.app = DemoApi(cls.base_url)
 
    def test_login(self):
        """
        测试登录
        """
        response = self.app.login(self.username, self.password)
        assert response['code'] == 200
        assert response['msg'] == 'success'
 
    def test_info(self):
        """
        测试获取详情信息
        """
        self.app.login(self.username, self.password)
        response = self.app.info()
        assert response['code'] == 200
        assert response['msg'] == 'success'
        assert response['data'] == 'info'
 
 

大功告成,我们把多个相关接口调用封装到一个类中,使用同一个requests Session实例来保持cookies,并且在调用过程中打印出了日志,我们所有目标都实现了,但再看下脚本,又会感觉不太舒服,在每个方法里,都要写一遍print 1、2、3... 要拼url、还要很多细节等等,但其实我们真正需要做的只是拼出关键的参数(url参数、body参数或者传入headers信息),可不可以只需定义必须的信息,然后把其它共性的东西都封装起来呢,统一放到一个地方去管理?

封装重复操作

来,我们再整理一下我们的需求:

  • 首先,不想去重复做拼接url的操作
  • 然后,不想每次都去手工打印日志
  • 不想和requests session打交道
  • 只想定义好参数就直接调用

我们先看一下实现后,脚本可能是什么样:

class DemoApi(object):
 
    def __init__(self, base_url):
        self.base_url = base_url
 
    @request(url='login', method='post')
    def login(self, username, password):
        """
        登录接口
        """
        data = {
            'username': username,
            'password': password
        }
 
        return {'data': data}
 
    @request(url='info', method='get')
    def info(self):
        """
        详情接口
        """
        pass

调用登录接口的日志

******************************************************
1、接口描述
登录接口
 
2、请求url
http://127.0.0.1:5000/login
 
3、请求方法
post
 
4、请求headers
{
    "Accept": "*/*",
    "Accept-Encoding": "gzip, deflate",
    "Connection": "keep-alive",
    "User-Agent": "python-requests/2.7.0 CPython/2.7.10 Darwin/16.4.0"
}
 
5、body参数
{
    "password": "123456",
    "username": "admin"
}
 
6、响应结果
{
    "code": 200,
    "msg": "success"
}
 

在这里,我们使用python的装饰器功能,把公共特性封装到装饰器中去实现。现在感觉好多了,没什么多余的东西了,我们可以专注于关键参数的构造,剩下的就是如何去实现这个装饰器了,我们先理一下思路:

  • 获取装饰器参数
  • 获取函数/方法参数
  • 把装饰器和函数定义的参数合并
  • 拼接url
  • 处理requests session,有则使用,无则新生成一个
  • 组装所有参数,发送http请求并打印日志

七、扩展

http接口请求的姿势我们定义好了,我们还可以做些什么呢?

  • [x] 非HTTP协议接口
  • [x] 测试用例编写
  • [x] 配置文件管理
  • [x] 测试数据管理
  • [x] 工具类编写
  • [x] 测试报告生成
  • [x] 持续集成
  • [x] 等等等等

需要做的还是挺多的,要做什么不要做什么,或者先做哪个,我觉得可以根据以下几点去判断:

  • 是否有利于提高团队生产效率
  • 是否有利于提高测试质量
  • 有没有现成的轮子可以用

下面就几项主要的点进行一下说明,限于篇幅,不再展开了

测试报告

这个应该是大家最关心的了,毕竟这是测试工作的产出;
目前python的主流单元测试框均有report插件,因此不建议自己再编写,除非有特殊需求的。

pytest:推荐使用pytest-html和allure pytest

unittest:推荐使用HTMLTestRunner

持续集成

持续集成推荐使用Jenkins,运行环境、定时任务、触发运行、邮件发送等一系列功能均可以在Jenkins上实现。

测试用例编写

推荐遵守如下规则:

  • 原子性:每个用例保持独立,彼此不耦合,以降低干扰;
  • 专一性:一个用例应该专注于验证一件事情,而不是做很多事情,一个测试点不要重复验证;
  • 稳定性:绝大多数用例应该是非常稳定的,也就是说不会经常因为除环境以外的因素挂掉,因为如果在一个测试项目中有很多不稳定的用例的话,测试结果就不能很好的反应项目质量;
  • 分类清晰:有相关性的用例应写到一个模块或一个测试类里,这样做即方便维护,又提高了报告的可读性;

测试工具类

这个可以根据项目情况去做,力求简化一些类库的使用,数据库访问、日期时间、序列化与反序列化等数据处理,或者封装一些常用操作,如随机生成订单号等等,以提高脚本编写效率。

测试数据管理

常见的方式有写在代码里、写在配置文件里(xml、yaml、json、.py、excel等)、写在数据库里等,该处没有什么好推荐的,建议根据个人喜好,怎么方便怎么来就可以。


八、pithy测试框架介绍

pithy意为简洁有力的,意在简化自动化接口测试,提高测试效率

目前实现的功能如下:

  • 一键生成测试项目
  • http client封装
  • thrift接口封装
  • 简化配置文件使用
  • 优化JSON、日期等工具使用

编写测试用例推荐使用pytest,pytest提供了很多测试工具以及插件,可以满足大部分测试需求。

安装

pip install pithy-test
pip install pytest 

使用

一键生成测试项目

>>>  pithy-cli init
请选择项目类型,输入api或者app: api
请输入项目名称,如pithy-api-test: pithy-api-test
开始创建pithy-api-test项目
开始渲染...
生成 api/.gitignore                   [√]
生成 api/apis/__init__.py             [√]
生成 api/apis/pithy_api.py            [√]
生成 api/cfg.yaml                     [√]
生成 api/db/__init__.py               [√]
生成 api/db/pithy_db.py               [√]
生成 api/README.MD                    [√]
生成 api/requirements.txt             [√]
生成 api/test_suites/__init__.py      [√]
生成 api/test_suites/test_login.py    [√]
生成 api/utils/__init__.py            [√]
生成成功,请使用编辑器打开该项目

生成项目树

>>> tree pithy-api-test
pithy-api-test
├── README.MD
├── apis
│   ├── __init__.py
│   └── pithy_api.py
├── cfg.yaml
├── db
│   ├── __init__.py
│   └── pithy_db.py
├── requirements.txt
├── test_suites
│   ├── __init__.py
│   └── test_login.py
└── utils
    └── __init__.py
 
4 directories, 10 files

调用HTTP登录接口示例

from pithy import request
 
@request(url='http://httpbin.org/post', method='post')
def post(self, key1='value1'):
    """
    post method
    """
    data = {
        'key1': key1
    }
    return dict(data=data)
 
# 使用
response = post('test').to_json()     # 解析json字符,输出为字典
response = post('test').json          # 解析json字符,输出为字典
response = post('test').to_content()  # 输出为字符串
response = post('test').content       # 输出为字符串
response = post('test').get_cookie()  # 输出cookie对象
response = post('test').cookie        # 输出cookie对象
 
# 结果取值, 假设此处response = {'a': 1, 'b': { 'c': [1, 2, 3, 4]}}
response = post('13111111111', '123abc').json
 
print response.b.c   # 通过点号取值,结果为[1, 2, 3, 4]
 
print response('$.a') # 通过object path取值,结果为1
 
for i in response('$..c[@>3]'): # 通过object path取值,结果为选中c字典里大于3的元素
    print i
 

优化JSON、字典使用

# 1、操作JSON的KEY
from pithy import JSONProcessor
dict_data = {'a': 1, 'b': {'a': [1, 2, 3, 4]}}
json_data = json.dumps(dict_data)
result = JSONProcessor(json_data)
print result.a     # 结果:1
print result.b.a   # 结果:[1, 2, 3, 4]
 
# 2、操作字典的KEY
dict_data = {'a': 1, 'b': {'a': [1, 2, 3, 4]}}
result = JSONProcessor(dict_data)
print result.a     # 1
print result.b.a   # [1, 2, 3, 4]
 
# 3、object path取值
raw_dict = {
    'key1':{
        'key2':{
            'key3': [1, 2, 3, 4, 5, 6, 7, 8]
        }
    }
}
 
jp = JSONProcessor(raw_dict)
for i in jp('$..key3[@>3]'):
    print i
    
# 4、其它用法
dict_1 = {'a': 'a'}
json_1 = '{"b": "b"}'
jp = JSONProcessor(dict_1, json_1, c='c')
print(jp)

九、总结

在本文中,我们以提高脚本开发效率为前提,一步一步打造了一个简易的测试框架,但因水平所限,并未涉及测试数据初始化清理、测试中如何MOCK等话题,前路依然任重而道远,希望给大家一个启发,不足之处还望多多指点,非常感谢。

感谢每一个认真阅读我文章的人,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

 这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

资料获取方式:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/628090.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Volo.Abp升级小记(二)创建全新微服务模块

文章目录 创建模块领域层应用层数据库和仓储控制器配置微服务 测试微服务微服务注册添加资源配置配置网关 运行项目 假设有一个按照 官方sample搭建的微服务项目,并安装好了abp-cli。 需要创建一个名为GDMK.CAH.Common的模块,并在模块中创建标签管理功能…

Redis指令-数据结构String类型和Hash类型

1. String类型 字符串类型,Redis中最简单的存储类型 底层都是字节数组形式存储,只不过是编码方式不同; 字符串类型的最大空间不能超过512m; SET/GET/MSET/MGET使用示例: INCR使用示例: INCRBY自增并指定步长…

GIS在地质灾害危险性评估与灾后重建中的应用

地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下,地质灾害在世界范围内频繁发生。我国除滑坡灾害外,还包括崩塌、泥石流、地面沉…

摩托车电动车头盔新标准GB811-2022?将于2023年7月1日强制实施!

头部在发生交通事故时受到猛烈撞击,头盔可以有效地保护头部。因为头盔光滑的半球性,可使冲击力分散并吸收冲击力,而头盔的变形或裂纹以及护垫,又起到一个缓冲作用,也能吸收一部分能量。据测算:人的头部一般…

Splashtop 荣获2023年 NAB 展会年度产品奖

2023年4月20日 加利福尼亚州库比蒂诺 Splashtop 在简便快捷的远程办公解决方案方案领域处于领先地位。Splashtop 宣布其 Enterprise 解决方案在2023年 NAB 展会年度产品奖项中荣获远程制作奖。NAB 展会的官方奖励计划旨在表彰参展商在今年的 NAB 展会上展出的一些重要的、有前…

探索Beyond Compare:让文件比较和管理变得简单高效

在这个信息爆炸时代,我们的日常生活和工作中需要处理大量的数据和文档。在这个过程中,有时候我们会面临找出不同文件之间的差异、合并重复内容等需求。那么,有没有一款软件可以帮助我们轻松地完成这些任务呢?答案当然是肯定的&…

SAP从入门到放弃系列之CRP-part3

这边文章主要简单介绍Fiori 应用中关于计划相关的内容如何配置。首先则在Firoi Library中搜索对应的APP,地址如下: https://fioriappslibrary.hana.ondemand.com/sap/fix/externalViewer/# 以订单调度应用为例, SAP Fiori Apps Reference …

12 VI——变分推断

文章目录 12 VI——变分推断12.1 背景介绍12.2 Classical VI12.2.1 公式导出12.2.2 坐标上升法 12.3 SGVI——随机梯度变分推断12.3.1 一般化MC方法12.3.2 降方差——Variance Reduction 12 VI——变分推断 12.1 背景介绍 变分推断的作用就是在概率图模型中进行参数估计&…

黑客工具: Storm-Breaker(访问摄像头,麦克风,获取定位)附kali linux下载命令

tags: 篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了黑客工具: Storm-Breaker(访问摄像头,麦克风,获取定位)附kali linux下载命令相关的知识,希望对你有一定的参考价…

【新星计划回顾】第五篇学习计划-数据库开启定时任务知识点

🏆🏆时间过的真快,这是导师回顾新星计划学习的第五篇文章!本篇文章主要是承接上一篇学习计划,通过开启定时任务进行模拟生成数据,实际开发项目中,可能会用到其他方式! 最近这段时间非…

K8s之Service四层代理入门实战详解

文章目录 一、Service四层代理概念、原理1、Service四层代理概念2、Service工作原理3、Service原理解读4、Service四种类型 二、Service四层代理三种类型案例1、创建ClusterIP类型Service2、创建NodePort类型Service3、创建ExternalName类型Service 三、拓展1、Service域名解析…

『Newsletter丨第一期』PieCloudDB 新增自动启停、预聚集、试用规则优化、费用中心等多项功能模块...

第一部分 PieCloudDB 最新动态 PieCloudDB 完成多个产品兼容性认证 PieCloudDB 与多家基础架构软件厂商完成产品兼容性认证,类别包括操作系统、服务器、CPU、云平台。 新增 8 家生态伙伴 ,包括龙蜥、麒麟、中科可控、海光、博云、杉岩、统信、兆兴…

小解送书【第一期】——《我们世界中的计算机》

目录 书籍介绍 内容简介 作者简介 译者简介 专家推荐 参与方式 书籍介绍 计算机和通信系统,以及由它们所实现的许多事物遍布我们周围。其中一些在日常生活中随处可见,比如笔记本电脑、手机和互联网。今天,在任何公共场所,都…

面向多告警源,如何构建统一告警管理体系?

本文介绍告警统一管理的最佳实践,以帮助企业更好地处理异构监控系统所带来的挑战和问题。 背景信息 在云原生时代,企业IT基础设施的规模越来越大,越来越多的系统和服务被部署在云环境中。为了监控这些复杂的IT环境,企业通常会选…

ATxSG 2023丨美格智能聚焦5G+AIoT,让全场景化数字生活加速到来

6月7日~9日,亚洲科技大会(Asia Tech x Singapore,简称ATxSG)在新加坡博览中心隆重开幕。ATxSG是亚洲旗舰科技盛会,由新加坡资讯通信媒体发展管理局(IMDA)和Informa Tech共同举办。第三届ATxSG聚焦生成式AI、Web 3.0和数…

YOLO系列理论合集(YOLOv1~v3SPP)

前言:学习自霹雳吧啦Wz YOLOV1 论文思想 1、将一幅图像分成SxS个网格(grid cell),如果某个object的中心落在这个网格中,则这个网格就负责预测这个object。 2、每个网格要预测B个bounding box,每个bounding box除了要预测位置(…

【智慧交通项目实战】 《 OCR车牌检测与识别》(二):基于YOLO的车牌检测

👨‍💻作者简介: CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。✨公众号:GoAI的学习小屋 ,免费分享书籍、简历、导图等&#xf…

特瑞仕 | 常见传感器基础知识归纳

​传感器是将物理量转换为电信号的装置,广泛应用于各种领域,如物联网、工业自动化、医疗健康等。传感器技术的发展和应用越来越广泛,其基础知识也日益重要。本文将介绍常见传感器的基础知识,包括传感器的种类、工作原理、应用领域…

JMeter测试笔记(四):逻辑控制器

引言: 进行性能测试时,我们需要根据不同的情况来设置不同的执行流程,而逻辑控制器可以帮助我们实现这个目的。 在本文中,我们将深入了解JMeter中的逻辑控制器,包括简单控制器、循环控制器等,并学习如何正…

Goby 漏洞更新 |Bifrost 中间件 X-Requested-With 系统身份认证绕过漏洞(CVE-2022-39267)

漏洞名称:Bifrost 中间件 X-Requested-With 系统身份认证绕过漏洞(CVE-2022-39267) English Name:Bifrost X-Requested-With Authentication Bypass Vulnerability (CVE-2022-39267) CVSS core: 8.8 影响资产数:14 漏洞描述&a…