文章目录
- 【高数+复变函数】Laplace变换的性质
- 一、性质
- 1. 线性性质
- 2. 微分性质
- 3. 像函数的微分性质
- 4. 积分性质
- 5. 象函数的积分性质
- 6. 位移性质
- 7. 延迟性质
【高数+复变函数】Laplace变换的性质
通过上一节【高数+复变函数】Laplace变换的学习,我们知道了Laplace的基本概念:
F
(
s
)
=
∫
0
+
∞
f
(
t
)
e
−
s
t
d
t
F(s)=\int_0^{+\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t
F(s)=∫0+∞f(t)e−st dt
这一节我们学习Laplace变换的一些常用性质。
一、性质
1. 线性性质
L [ α f 1 ( t ) + β f 2 ( t ) ] = α L [ f 1 ( t ) ] + β L [ f 2 ( t ) ] , \mathscr{L}\left[\alpha f_1(t)+\beta f_2(t)\right]=\alpha \mathscr{L}\left[f_1(t)\right]+\beta \mathscr{L}\left[f_2(t)\right] \text {, } L[αf1(t)+βf2(t)]=αL[f1(t)]+βL[f2(t)],
它的证朋只需根据定义,利用积分性质就可推出
例:求
f
(
t
)
=
s
i
n
h
t
f(t)=sinht
f(t)=sinht的Laplace变换
L
[
f
(
t
)
]
=
L
[
e
t
−
e
−
t
2
]
=
1
2
[
L
[
e
t
]
+
L
[
e
−
t
]
]
=
1
2
[
1
s
−
1
+
1
s
+
1
]
=
1
s
2
+
1
\mathscr{L}[f(t)]=\mathscr{L}[\frac{e^t-e^{-t}}{2}]=\frac{1}{2}[\mathscr{L}[e^t]+\mathscr{L}[e^{-t}]]=\frac{1}{2}[\frac{1}{s-1}+\frac{1}{s+1}]=\frac{1}{s^2+1}
L[f(t)]=L[2et−e−t]=21[L[et]+L[e−t]]=21[s−11+s+11]=s2+11
2. 微分性质
L [ f ′ ( t ) ] = s F ( s ) − f ( 0 ) . \mathscr{L}\left[f^{\prime}(t)\right]=s F(s)-f(0) . L[f′(t)]=sF(s)−f(0).
它的证明只需根据定义,利用分部积分性质就可推出
推广:
S
[
f
′
′
(
t
)
]
=
s
2
F
(
s
)
−
s
f
(
0
)
−
f
′
(
0
)
\mathscr{S}\left[f^{\prime \prime}(t)\right]=s^2 F(s)-s f(0)-f^{\prime}(0)
S[f′′(t)]=s2F(s)−sf(0)−f′(0)
L
[
f
(
n
)
(
t
)
]
=
s
n
F
(
s
)
−
s
n
−
1
f
(
0
)
−
s
n
−
2
f
′
(
0
)
−
⋯
−
f
(
n
−
1
)
(
0
)
\mathscr{L}\left[f^{(n)}(t)\right] = s^n F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0)
L[f(n)(t)]=snF(s)−sn−1f(0)−sn−2f′(0)−⋯−f(n−1)(0)
可以正反两用,求
E
[
f
(
n
)
(
t
)
]
\mathscr{E}\left[f^{(n)}(t)\right]
E[f(n)(t)]或者
F
(
s
)
F(s)
F(s)
例1 求函数 f ( t ) = t m f(t)=t^m f(t)=tm 的 Laplace 变换, 其中 m m m 是正整数
由于
f
(
0
)
=
f
′
(
0
)
=
⋯
=
f
(
m
−
1
)
(
0
)
=
0
f(0)=f^{\prime}(0)=\cdots=f^{(m-1)}(0)=0
f(0)=f′(0)=⋯=f(m−1)(0)=0, 而
f
(
m
)
(
t
)
=
m
f^{(m)}(t)=m
f(m)(t)=m !所以:
L
[
m
!
]
=
s
n
F
(
s
)
\mathscr{L}[m!]=s^nF(s)
L[m!]=snF(s)
而
L
[
m
!
]
=
m
!
L
[
1
]
=
m
!
s
\mathscr{L}[m!]=m!\mathscr{L}[1]=\frac{m!}{s}
L[m!]=m!L[1]=sm!,其中
L
[
1
]
\mathscr{L}[1]
L[1]可理解成
f
(
t
)
=
1
f(t)=1
f(t)=1
所以
F
(
s
)
=
m
!
s
n
+
1
(
由
L
[
1
]
产生
R
e
s
>
0
)
F(s)=\frac{m!}{s^{n+1}}(由\mathscr{L}[1]产生Res>0)
F(s)=sn+1m!(由L[1]产生Res>0)
例2 求函数
f
(
t
)
=
cos
k
t
f(t)=\cos k t
f(t)=coskt 的 Laplace 变换.
解 由于
f
(
0
)
=
1
,
f
′
(
0
)
=
0
,
f
′
′
(
t
)
=
−
k
2
cos
k
t
f(0)=1, f^{\prime}(0)=0, f^{\prime \prime}(t)=-k^2 \cos k t
f(0)=1,f′(0)=0,f′′(t)=−k2coskt, 则有
即
−
k
2
L
[
cos
k
t
]
=
s
2
L
[
cos
k
t
]
−
s
,
-k^2 \mathscr{L}[\cos k t]=s^2 \mathscr{L}[\cos k t]-s,
−k2L[coskt]=s2L[coskt]−s,
移项化简得
L
[
cos
k
t
]
=
s
s
2
+
k
2
(
Re
(
s
)
>
0
)
\mathscr{L}[\cos k t]=\frac{s}{s^2+k^2} \quad(\operatorname{Re}(s)>0)
L[coskt]=s2+k2s(Re(s)>0)
利用了cos二阶导的不变性
3. 像函数的微分性质
F ′ ( s ) = − L [ t f ( t ) ] F^{\prime}(s)=-\mathscr{L}[t f(t)] F′(s)=−L[tf(t)]
推广:
F
(
n
)
(
s
)
=
(
−
1
)
n
L
[
t
n
f
(
t
)
]
F^{(n)}(s)=(-1)^n \mathscr{L}\left[t^n f(t)\right]
F(n)(s)=(−1)nL[tnf(t)]
例3 求函数
f
(
t
)
=
t
sin
k
t
f(t)=t \sin k t
f(t)=tsinkt 的 Laplace 变换.
令
g
(
t
)
=
s
i
n
k
t
g(t)=sinkt
g(t)=sinkt
L
[
t
g
(
t
)
]
=
−
F
′
(
g
(
t
)
)
=
−
d
d
s
(
k
s
2
+
k
2
)
=
2
k
s
(
s
2
+
k
2
)
2
,
Re
(
s
)
>
0
\mathscr{L}[tg(t)]=-F^{'}(g(t))=-\frac{d}{d s}\left(\frac{k}{s^2+k^2}\right)=\frac{2 k s}{\left(s^2+k^2\right)^2}, \quad \operatorname{Re}(s)>0
L[tg(t)]=−F′(g(t))=−dsd(s2+k2k)=(s2+k2)22ks,Re(s)>0
4. 积分性质
若
L
[
f
(
t
)
]
=
F
(
s
)
\mathscr{L}[f(t)]=F(s)
L[f(t)]=F(s), 则
L
[
∫
0
t
f
(
t
)
d
t
]
=
1
s
F
(
s
)
.
\mathscr{L}\left[\int_0^t f(t) \mathrm{d} t\right]=\frac{1}{s} F(s) .
L[∫0tf(t)dt]=s1F(s).
利用
L
[
f
(
t
)
]
\mathscr{L}[f(t)]
L[f(t)]作为中介进行转换。
推广:
L
[
∫
0
t
d
t
∫
0
t
d
t
⋯
∫
0
t
f
(
t
)
d
t
]
=
1
s
n
F
(
s
)
.
\mathfrak{L}\left[\int_0^t \mathrm{~d} t \int_0^t \mathrm{~d} t \cdots \int_0^t f(t) \mathrm{d} t\right]=\frac{1}{s^n} F(s) .
L[∫0t dt∫0t dt⋯∫0tf(t)dt]=sn1F(s).
5. 象函数的积分性质
L [ f ( t ) t ] = ∫ s ∞ F ( s ) d s \mathscr{L}\left[\frac{f(t)}{t}\right]=\int_s^{\infty} F(s) \mathrm{d} s L[tf(t)]=∫s∞F(s)ds
证明:
∫
s
∞
F
(
u
)
d
u
=
∫
s
∞
d
u
∫
0
+
∞
f
(
t
)
e
−
u
t
d
t
=
∫
0
+
∞
f
(
t
)
d
t
∫
s
∞
e
−
u
t
d
u
=
∫
0
+
∞
f
(
t
)
t
e
−
s
t
d
t
=
L
[
f
(
t
)
t
]
.
\begin{aligned} \int_s^{\infty} F(u) \mathrm{d} u & =\int_s^{\infty} \mathrm{d} u \int_0^{+\infty} f(t) e^{-u t} \mathrm{~d} t \\ & =\int_0^{+\infty} f(t) \mathrm{d} t \int_s^{\infty} e^{-u t} \mathrm{~d} u \\ & =\int_0^{+\infty} \frac{f(t)}{t} e^{-s t} \mathrm{~d} t=\mathfrak{L}\left[\frac{f(t)}{t}\right] . \end{aligned}
∫s∞F(u)du=∫s∞du∫0+∞f(t)e−ut dt=∫0+∞f(t)dt∫s∞e−ut du=∫0+∞tf(t)e−st dt=L[tf(t)].
例4 求函数
f
(
t
)
=
sinh
t
t
f(t)=\frac{\sinh t}{t}
f(t)=tsinht 的 Laplace 变换
前面已经证得
L
[
sinh
t
]
=
1
s
2
−
1
\mathscr{L}[\sinh t]=\frac{1}{s^2-1}
L[sinht]=s2−11,所以
L
[
sinh
t
t
]
=
∫
1
∞
L
[
sinh
t
]
d
s
=
∫
s
∞
1
s
2
−
1
d
s
=
1
2
ln
s
−
1
s
+
1
∣
0
∞
=
1
2
ln
s
+
1
s
−
1
\mathscr{L}\left[\frac{\sinh t}{t}\right] =\int_1^{\infty} \mathscr{L}[\sinh t] \mathrm{d} s=\int_s^{\infty} \frac{1}{s^2-1} \mathrm{~d} s =\left.\frac{1}{2} \ln \frac{s-1}{s+1}\right|^{\infty}_0=\frac{1}{2} \ln \frac{s+1}{s-1}
L[tsinht]=∫1∞L[sinht]ds=∫s∞s2−11 ds=21lns+1s−1
0∞=21lns−1s+1
通常我们还可以运用此积分性质计算一些复杂积分:
如果积分
∫
0
+
x
f
(
t
)
t
d
t
\int_0^{+x} \frac{f(t)}{t} \mathrm{~d} t
∫0+xtf(t) dt 存在, 取
s
=
0
s=0
s=0, 则有
∫
0
+
∞
f
(
t
)
t
d
t
=
∫
0
+
∞
F
(
s
)
d
s
∴
狄利克雷积分
∫
0
+
∞
sin
t
t
d
t
=
∫
0
∞
1
s
2
+
1
d
s
=
arctan
s
∣
0
∞
=
π
2
.
\int_0^{+\infty} \frac{f(t)}{t} \mathrm{~d} t=\int_0^{+\infty} F(s) \mathrm{d} s\\ \therefore 狄利克雷积分\int_0^{+\infty} \frac{\sin t}{t} \mathrm{~d} t=\int_0^{\infty} \frac{1}{s^2+1} \mathrm{~d} s=\left.\arctan s\right|_0 ^{\infty}=\frac{\pi}{2} .
∫0+∞tf(t) dt=∫0+∞F(s)ds∴狄利克雷积分∫0+∞tsint dt=∫0∞s2+11 ds=arctans∣0∞=2π.
6. 位移性质
L [ e a t f ( t ) ] = F ( s − a ) ( Re ( s − a ) > c ) ∵ L [ e a t f ( t ) ] = ∫ 0 + ∞ e a t f ( t ) e − s t d t = ∫ 0 + ∞ f ( t ) e − ( s − a ) t d t \mathscr{L}\left[\mathrm{e}^{at} f(t)\right]=F(s-a) \quad(\operatorname{Re}(s-a)>c) \\\because \mathscr{L}\left[\mathrm{e}^{a t} f(t)\right]=\int_0^{+\infty} \mathrm{e}^{a t} f(t) \mathrm{e}^{-s t} \mathrm{~d} t=\int_0^{+\infty} f(t) \mathrm{e}^{-(s-a) t} \mathrm{~d} t L[eatf(t)]=F(s−a)(Re(s−a)>c)∵L[eatf(t)]=∫0+∞eatf(t)e−st dt=∫0+∞f(t)e−(s−a)t dt
这个性质表朋了一个象原函数乘函数 e a t \mathrm{e}^{at} eat 的 Laplace 变换等于其象函数作位移 a a a.
7. 延迟性质
若
L
[
f
(
t
)
]
=
F
(
s
)
\mathscr{L}[f(t)]=F(s)
L[f(t)]=F(s), 又
t
<
0
t<0
t<0 时
f
(
t
)
=
0
f(t)=0
f(t)=0, 则对于任一非负实数
τ
\tau
τ, 有
L
[
f
(
t
−
τ
)
]
=
e
−
s
τ
F
(
s
)
变量代换证明
L
[
f
(
t
−
τ
)
u
(
t
−
τ
)
]
=
e
−
s
τ
F
(
s
)
看图理解,只有
t
>
τ
时有用
\mathfrak{L}[f(t-\tau)]=e^{-s \tau} F(s)变量代换证明\\ \mathfrak{L}[f(t-\tau) u(t-\tau)]=e^{-s \tau} F(s)看图理解,只有t>\tau时有用
L[f(t−τ)]=e−sτF(s)变量代换证明L[f(t−τ)u(t−τ)]=e−sτF(s)看图理解,只有t>τ时有用
Notice:when t<0, f(t) = 0