Additive Models
to avoid the curse of dimensionality and for better interpretability we assume
  
      
       
        
        
          m 
         
        
          ( 
         
        
          x 
         
        
          ) 
         
        
          = 
         
        
          E 
         
        
          ( 
         
        
          Y 
         
        
          ∣ 
         
        
          X 
         
        
          = 
         
        
          x 
         
        
          ) 
         
        
          = 
         
        
          c 
         
        
          + 
         
         
         
           ∑ 
          
          
          
            j 
           
          
            = 
           
          
            1 
           
          
         
           d 
          
         
         
         
           g 
          
         
           j 
          
         
        
          ( 
         
         
         
           x 
          
         
           j 
          
         
        
          ) 
         
        
       
         m(\boldsymbol{x})=E(Y|\boldsymbol{X}=\boldsymbol{x})=c+\sum_{j=1}^dg_j(x_j) 
        
       
     m(x)=E(Y∣X=x)=c+j=1∑dgj(xj)
  
     
      
       
       
         ⟹ 
        
       
      
        \Longrightarrow 
       
      
    ⟹ the additive functions  
     
      
       
        
        
          g 
         
        
          j 
         
        
       
      
        g_j 
       
      
    gj can be estimated with the optimal one-dimensional rate
two possible methods for estimating an additive model:
- backfitting estimator
- marginal integration estimator
 indentification conditions for both methods
E X j { g ( X j ) } = 0 , ∀ j = 1 , … , d ⟹ E ( Y ) = e \begin{aligned} E_{X_j}\{ g(X&_j) \}=0, \forall j=1,\dots,d\\ & \Longrightarrow E(Y)=e \end{aligned} EXj{g(Xj)}=0,∀j=1,…,d⟹E(Y)=e
formulation Hibert space framework:
- let H Y X \mathcal{H}_{Y\boldsymbol{X}} HYX be the Hilbert space of random variables which are functions of Y , X Y, \boldsymbol{X} Y,X
- let ⟨ U , V ⟩ = E ( U V ) \langle U,V\rangle=E(UV) ⟨U,V⟩=E(UV) the scalar product
- define H X \mathcal{H}_{\boldsymbol{X}} HX and H X , j = 1 , … , d \mathcal{H}_{X},j=1,\dots,d HX,j=1,…,d the corresponding subspaces
 
     
      
       
       
         ⟹ 
        
       
      
        \Longrightarrow 
       
      
    ⟹ we aim to find the element of  
     
      
       
        
        
          H 
         
         
         
           X 
          
         
           1 
          
         
        
       
         ⊕ 
        
       
         ⋯ 
        
       
         ⊕ 
        
        
        
          H 
         
         
         
           X 
          
         
           d 
          
         
        
       
      
        \mathcal{H}_{X_1}\oplus \cdots \oplus\mathcal{H}_{X_d} 
       
      
    HX1⊕⋯⊕HXd closest to  
     
      
       
       
         Y 
        
       
         ∈ 
        
        
        
          H 
         
         
         
           Y 
          
         
           X 
          
         
        
       
      
        Y\in\mathcal{H}_{Y\boldsymbol{X}} 
       
      
    Y∈HYX or  
     
      
       
       
         m 
        
       
         ∈ 
        
        
        
          H 
         
        
          X 
         
        
       
      
        m\in \mathcal{H}_{\boldsymbol{X}} 
       
      
    m∈HX
 by the projection theorem, there exists a unique solution with
  
      
       
        
        
          E 
         
        
          [ 
         
        
          { 
         
        
          Y 
         
        
          − 
         
        
          m 
         
        
          ( 
         
        
          X 
         
        
          ) 
         
        
          } 
         
        
          ∣ 
         
         
         
           X 
          
         
           α 
          
         
        
          ] 
         
        
          = 
         
        
          0 
         
           
        
          ⟺ 
           
         
         
           g 
          
         
           α 
          
         
        
          ( 
         
         
         
           X 
          
         
           α 
          
         
        
          ) 
         
        
          = 
         
        
          E 
         
        
          [ 
         
        
          { 
         
        
          Y 
         
        
          − 
         
         
         
           ∑ 
          
          
          
            j 
           
          
            ≠ 
           
          
            α 
           
          
         
         
         
           g 
          
         
           j 
          
         
        
          ( 
         
         
         
           X 
          
         
           j 
          
         
        
          ) 
         
        
          } 
         
        
          ∣ 
         
         
         
           X 
          
         
           α 
          
         
        
          ] 
         
        
          , 
         
         
        
          α 
         
        
          = 
         
        
          1 
         
        
          , 
         
        
          … 
         
        
          , 
         
        
          d 
         
        
       
         E[\{ Y-m(\boldsymbol{X}) \}|X_{\alpha}]=0\\ \iff g_{\alpha}(X_{\alpha})=E[\{ Y-\sum_{j\neq\alpha}g_j(X_j) \}|X_{\alpha}], \quad\alpha=1,\dots,d 
        
       
     E[{Y−m(X)}∣Xα]=0⟺gα(Xα)=E[{Y−j=α∑gj(Xj)}∣Xα],α=1,…,d
 denote projection  
     
      
       
        
        
          P 
         
        
          α 
         
        
       
         ( 
        
       
         ∙ 
        
       
         ) 
        
       
         = 
        
       
         E 
        
       
         ( 
        
       
         ∙ 
        
       
         ∣ 
        
        
        
          X 
         
        
          α 
         
        
       
         ) 
        
       
      
        P_{\alpha}(\bullet)=E(\bullet|X_{\alpha}) 
       
      
    Pα(∙)=E(∙∣Xα)
  
      
       
        
        
          ⟹ 
         
         
         
           ( 
          
          
           
            
             
             
               I 
              
             
            
            
             
              
              
                P 
               
              
                1 
               
              
             
            
            
             
             
               ⋯ 
              
             
            
            
             
              
              
                P 
               
              
                1 
               
              
             
            
           
           
            
             
              
              
                P 
               
              
                2 
               
              
             
            
            
             
             
               I 
              
             
            
            
             
             
               ⋯ 
              
             
            
            
             
              
              
                P 
               
              
                2 
               
              
             
            
           
           
            
             
              
              
                ⋮ 
               
               
                
               
              
             
            
            
             
              
             
            
            
             
             
               ⋱ 
              
             
            
            
             
              
              
                ⋮ 
               
               
                
               
              
             
            
           
           
            
             
              
              
                P 
               
              
                d 
               
              
             
            
            
             
             
               ⋯ 
              
             
            
            
             
              
              
                P 
               
              
                d 
               
              
             
            
            
             
             
               I 
              
             
            
           
          
         
           ) 
          
         
         
         
           ( 
          
          
           
            
             
              
               
               
                 g 
                
               
                 1 
                
               
               
               
                 ( 
                
                
                
                  X 
                 
                
                  1 
                 
                
               
                 ) 
                
               
              
             
            
           
           
            
             
              
               
               
                 g 
                
               
                 2 
                
               
               
               
                 ( 
                
                
                
                  X 
                 
                
                  2 
                 
                
               
                 ) 
                
               
              
             
            
           
           
            
             
              
              
                ⋮ 
               
               
                
               
              
             
            
           
           
            
             
              
               
               
                 g 
                
               
                 d 
                
               
               
               
                 ( 
                
                
                
                  X 
                 
                
                  d 
                 
                
               
                 ) 
                
               
              
             
            
           
          
         
           ) 
          
         
        
          = 
         
         
         
           ( 
          
          
           
            
             
              
               
               
                 P 
                
               
                 1 
                
               
              
                Y 
               
              
             
            
           
           
            
             
              
               
               
                 P 
                
               
                 2 
                
               
              
                Y 
               
              
             
            
           
           
            
             
              
              
                ⋮ 
               
               
                
               
              
             
            
           
           
            
             
              
               
               
                 P 
                
               
                 d 
                
               
              
                Y 
               
              
             
            
           
          
         
           ) 
          
         
        
       
         \Longrightarrow\left(\begin{array}{cccc} I & P_{1} & \cdots & P_{1} \\ P_{2} & I & \cdots & P_{2} \\ \vdots & & \ddots & \vdots \\ P_{d} & \cdots & P_{d} & I \end{array}\right)\left(\begin{array}{c} g_{1}\left(X_{1}\right) \\ g_{2}\left(X_{2}\right) \\ \vdots \\ g_{d}\left(X_{d}\right) \end{array}\right)=\left(\begin{array}{c} P_{1} Y \\ P_{2} Y \\ \vdots \\ P_{d} Y \end{array}\right) 
        
       
     ⟹ 
              IP2⋮PdP1I⋯⋯⋯⋱PdP1P2⋮I 
               
              g1(X1)g2(X2)⋮gd(Xd) 
              = 
              P1YP2Y⋮PdY 
              
 denote by
  
      
       
        
         
         
           S 
          
         
           α 
          
         
         
        
          the 
          
        
          ( 
         
        
          n 
         
        
          × 
         
        
          n 
         
        
          ) 
         
         
        
          smoother matrix 
         
        
       
         \bold{S}_{\alpha}\quad \text{the} \,(n\times n) \quad \text{smoother matrix} 
        
       
     Sαthe(n×n)smoother matrix
 such that  
     
      
       
        
        
          S 
         
        
          α 
         
        
       
         Y 
        
       
      
        \bold{S}_{\alpha}\boldsymbol{Y} 
       
      
    SαY is an estimate of the vector  
     
      
       
       
         { 
        
       
         E 
        
       
         ( 
        
        
        
          Y 
         
        
          1 
         
        
       
         ∣ 
        
        
        
          X 
         
         
         
           α 
          
         
           1 
          
         
        
       
         ) 
        
       
         , 
        
       
         … 
        
       
         , 
        
       
         E 
        
       
         ( 
        
        
        
          Y 
         
        
          n 
         
        
       
         ∣ 
        
        
        
          X 
         
         
         
           α 
          
         
           n 
          
         
        
       
         ) 
        
        
        
          } 
         
        
          ⊤ 
         
        
       
      
        \{ E(Y_1|X_{\alpha1}),\dots,E(Y_n|X_{\alpha n}) \}^{\top} 
       
      
    {E(Y1∣Xα1),…,E(Yn∣Xαn)}⊤
  
      
       
        
        
          ⟹ 
         
         
          
           
           
             ( 
            
            
             
              
               
               
                 I 
                
               
              
              
               
                
                
                  S 
                 
                
                  1 
                 
                
               
              
              
               
               
                 ⋯ 
                
               
              
              
               
                
                
                  S 
                 
                
                  1 
                 
                
               
              
             
             
              
               
                
                
                  S 
                 
                
                  2 
                 
                
               
              
              
               
               
                 I 
                
               
              
              
               
               
                 ⋯ 
                
               
              
              
               
                
                
                  S 
                 
                
                  2 
                 
                
               
              
             
             
              
               
                
                
                  ⋮ 
                 
                 
                  
                 
                
               
              
              
               
                
               
              
              
               
               
                 ⋱ 
                
               
              
              
               
                
                
                  ⋮ 
                 
                 
                  
                 
                
               
              
             
             
              
               
                
                
                  S 
                 
                
                  d 
                 
                
               
              
              
               
               
                 ⋯ 
                
               
              
              
               
                
                
                  S 
                 
                
                  d 
                 
                
               
              
              
               
               
                 I 
                
               
              
             
            
           
             ) 
            
           
          
            ⏟ 
           
          
          
          
            n 
           
          
            d 
           
          
            × 
           
          
            n 
           
          
            d 
           
          
         
         
         
           ( 
          
          
           
            
             
              
              
                g 
               
              
                1 
               
              
             
            
           
           
            
             
              
              
                g 
               
              
                2 
               
              
             
            
           
           
            
             
              
              
                ⋮ 
               
               
                
               
              
             
            
           
           
            
             
              
              
                g 
               
              
                d 
               
              
             
            
           
          
         
           ) 
          
         
        
          = 
         
         
         
           ( 
          
          
           
            
             
              
               
               
                 S 
                
               
                 1 
                
               
              
                Y 
               
              
             
            
           
           
            
             
              
               
               
                 S 
                
               
                 2 
                
               
              
                Y 
               
              
             
            
           
           
            
             
              
              
                ⋮ 
               
               
                
               
              
             
            
           
           
            
             
              
               
               
                 S 
                
               
                 d 
                
               
              
                Y 
               
              
             
            
           
          
         
           ) 
          
         
        
       
         \Longrightarrow \underbrace{\left(\begin{array}{cccc} \mathbf{I} & \mathbf{S}_{1} & \cdots & \mathbf{S}_{1} \\ \mathbf{S}_{2} & \mathbf{I} & \cdots & \mathbf{S}_{2} \\ \vdots & & \ddots & \vdots \\ \mathbf{S}_{d} & \cdots & \mathbf{S}_{d} & \mathbf{I} \end{array}\right)}_{n d \times n d}\left(\begin{array}{c} \boldsymbol{g}_{1} \\ \boldsymbol{g}_{2} \\ \vdots \\ \boldsymbol{g}_{d} \end{array}\right)=\left(\begin{array}{c} \mathbf{S}_{1} \boldsymbol{Y} \\ \mathbf{S}_{2} \boldsymbol{Y} \\ \vdots \\ \mathbf{S}_{d} \boldsymbol{Y} \end{array}\right) 
        
       
     ⟹nd×nd 
                   
                   
                   
                         IS2⋮SdS1I⋯⋯⋯⋱SdS1S2⋮I 
                          
              g1g2⋮gd 
              = 
              S1YS2Y⋮SdY 
              
 note: infinite samples the matrix on the left side can be singular
Bacfitting algorithm
in practice, the following backfitting algorithm (a simplification of the Gauss-Seidel procedure) is used:
- initialize g ^ ( 0 ) ≡ 0 ∀ α , c ^ = Y ˉ \hat{\boldsymbol{g}}^{(0)}\equiv 0 \,\forall\alpha,\hat{c}=\bar{Y} g^(0)≡0∀α,c^=Yˉ
- repeat for  
      
       
        
        
          α 
         
        
          = 
         
        
          1 
         
        
          , 
         
        
          … 
         
        
          , 
         
        
          d 
         
        
       
         \alpha=1,\dots,d 
        
       
     α=1,…,d
 r α = Y − c ^ − ∑ j = 1 α − 1 g ^ j ( ℓ + 1 ) − ∑ j = α + 1 d g ^ j ( ℓ ) g ^ α ( ℓ + 1 ) ( ∙ ) = S α ( r α ) \begin{aligned} \boldsymbol{r}_\alpha & =\boldsymbol{Y}-\widehat{c}-\sum_{j=1}^{\alpha-1} \widehat{\boldsymbol{g}}_j^{(\ell+1)}-\sum_{j=\alpha+1}^d \widehat{\boldsymbol{g}}_j^{(\ell)} \\ \widehat{\boldsymbol{g}}_\alpha^{(\ell+1)}(\bullet) & =\mathbf{S}_\alpha\left(\boldsymbol{r}_\alpha\right) \end{aligned} rαg α(ℓ+1)(∙)=Y−c −j=1∑α−1g j(ℓ+1)−j=α+1∑dg j(ℓ)=Sα(rα)
- proceed until convergence is reached
Example: smoother performance in additive models
simulated sample of  
     
      
       
       
         n 
        
       
         = 
        
       
         75 
        
       
      
        n = 75 
       
      
    n=75 regression observations with regressors  
     
      
       
        
        
          X 
         
        
          j 
         
        
       
      
        X_j 
       
      
    Xj i.i.d.
 uniform on  
     
      
       
       
         [ 
        
       
         − 
        
       
         2.5 
        
       
         , 
        
       
         2.5 
        
       
         ] 
        
       
      
        [-2.5, 2.5] 
       
      
    [−2.5,2.5], generated from
  
      
       
        
        
          Y 
         
        
          = 
         
         
         
           ∑ 
          
          
          
            j 
           
          
            = 
           
          
            1 
           
          
         
           4 
          
         
         
         
           g 
          
         
           j 
          
         
        
          ( 
         
         
         
           X 
          
         
           j 
          
         
        
          ) 
         
        
          + 
         
        
          ε 
         
        
          , 
         
         
        
          ε 
         
        
          ∼ 
         
        
          N 
         
        
          ( 
         
        
          0 
         
        
          , 
         
        
          1 
         
        
          ) 
         
        
       
         Y=\sum_{j=1}^4g_j(X_j)+\varepsilon, \quad \varepsilon\sim N(0,1) 
        
       
     Y=j=1∑4gj(Xj)+ε,ε∼N(0,1)
 where
  
      
       
        
         
          
           
            
             
             
               g 
              
             
               1 
              
             
             
             
               ( 
              
              
              
                X 
               
              
                1 
               
              
             
               ) 
              
             
            
              = 
             
            
              − 
             
            
              sin 
             
            
               
             
             
             
               ( 
              
             
               2 
              
              
              
                X 
               
              
                1 
               
              
             
               ) 
              
             
            
           
          
          
           
            
             
             
               g 
              
             
               2 
              
             
             
             
               ( 
              
              
              
                X 
               
              
                2 
               
              
             
               ) 
              
             
            
              = 
             
             
             
               X 
              
             
               2 
              
             
               2 
              
             
            
              − 
             
            
              E 
             
             
             
               ( 
              
              
              
                X 
               
              
                2 
               
              
                2 
               
              
             
               ) 
              
             
            
           
          
         
         
          
           
            
             
             
               g 
              
             
               3 
              
             
             
             
               ( 
              
              
              
                X 
               
              
                3 
               
              
             
               ) 
              
             
            
              = 
             
             
             
               X 
              
             
               3 
              
             
            
           
          
          
           
            
             
             
               g 
              
             
               4 
              
             
             
             
               ( 
              
              
              
                X 
               
              
                4 
               
              
             
               ) 
              
             
            
              = 
             
            
              exp 
             
            
               
             
             
             
               ( 
              
             
               − 
              
              
              
                X 
               
              
                4 
               
              
             
               ) 
              
             
            
              − 
             
            
              E 
             
             
             
               { 
              
             
               exp 
              
             
                
              
              
              
                ( 
               
              
                − 
               
               
               
                 X 
                
               
                 4 
                
               
              
                ) 
               
              
             
               } 
              
             
            
           
          
         
        
       
         \begin{array}{ll} g_1\left(X_1\right)=-\sin \left(2 X_1\right) & g_2\left(X_2\right)=X_2^2-E\left(X_2^2\right) \\ g_3\left(X_3\right)=X_3 & g_4\left(X_4\right)=\exp \left(-X_4\right)-E\left\{\exp \left(-X_4\right)\right\} \end{array} 
        
       
     g1(X1)=−sin(2X1)g3(X3)=X3g2(X2)=X22−E(X22)g4(X4)=exp(−X4)−E{exp(−X4)}
 Plotting results in this example:
 
Code:
n = 75
X = matrix(NA, n, 4)
for (i in 1:4) {
  X[, i] = runif(n, min = -2.5, max = 2.5)
}
g1 = function(x) {
  return(-sin(2 * x))
}
g2 = function(x) {
  return(x ^ 2 - mean(x ^ 2))
}
g3 = function(x) {
  return(x)
}
g4 = function(x) {
  return(exp(-x) - mean(exp(-x)))
}
eps = rnorm(n)
###indicator function
I = function(x, index) {
  if (index == 1) {
    return(x)
  }
  if (index == 0) {
    return(0)
  }
}
x <- seq(-2.5, 2.5, l = 100)
Y = I(g1(X[, 1]), 1) + I(g2(X[, 2]), 0) + I(g3(X[, 3]), 0) + I(g4(X[, 4]), 0) + eps
fit_g1 <- loess(
  Y ~ x,
  family = 'symmetric',
  degree = 2,
  span = 0.7,
  data = data.frame(x = X[, 1], Y = Y),
  surface = "direct"
)
out_g1 <- predict(fit_g1,
                  newdata = data.frame(newx = x),
                  se = TRUE)
low_g1 <- out_g1$fit - qnorm(0.975) * out_g1$se.fit
high_g1 <- out_g1$fit + qnorm(0.975) * out_g1$se.fit
df.low_g1 <- data.frame(x = x, y = low_g1)
df.high_g1 <- data.frame(x = x, y = high_g1)
P1 = ggplot(data = data.frame(X1 = X[, 1], g1 = Y),
            aes(X1, g1)) +
  geom_point() +
  geom_smooth(method = "loess", show.legend = TRUE) +
  geom_line(data = df.low_g1, aes(x, y), color = "red") +
  geom_line(data = df.high_g1, aes(x, y), color = "red")
Y = I(g1(X[, 1]), 0) + I(g2(X[, 2]), 1) + I(g3(X[, 3]), 0) + I(g4(X[, 4]), 0) + eps
fit_g2 <- loess(
  Y ~ x,
  family = 'symmetric',
  degree = 2,
  span = 0.9,
  data = data.frame(
    x = X[, 2],
    Y = (Y - fit_g1$fitted),
    surface = "direct"
  )
)
out_g2 <- predict(fit_g2,
                  newdata = data.frame(newx = x),
                  se = TRUE)
low_g2 <- out_g2$fit - qnorm(0.975) * out_g2$se.fit
high_g2 <- out_g2$fit + qnorm(0.975) * out_g2$se.fit
df.low_g2 <- data.frame(x = x, y = low_g2)
df.high_g2 <- data.frame(x = x, y = high_g2)
P2 = ggplot(data = data.frame(X2 = X[, 2], g2 = (Y - fit_g1$fitted)),
            aes(X2, g2)) +
  geom_point() +
  geom_smooth(method = "loess", show.legend = TRUE) +
  geom_line(data = df.low_g2, aes(x, y), color = "red") +
  geom_line(data = df.high_g2, aes(x, y), color = "red")
Y = I(g1(X[, 1]), 0) + I(g2(X[, 2]), 0) + I(g3(X[, 3]), 1) + I(g4(X[, 4]), 0) + eps
fit_g3 <- loess(
  Y ~ x,
  family = 'symmetric',
  degree = 2,
  span = 0.9,
  data = data.frame(
    x = X[, 3],
    Y = (Y - fit_g1$fitted - fit_g2$fitted),
    surface = "direct"
  )
)
out_g3 <- predict(fit_g3,
                  newdata = data.frame(newx = x),
                  se = TRUE)
low_g3 <- out_g3$fit - qnorm(0.975) * out_g3$se.fit
high_g3 <- out_g3$fit + qnorm(0.975) * out_g3$se.fit
df.low_g3 <- data.frame(x = x, y = low_g3)
df.high_g3 <- data.frame(x = x, y = high_g3)
P3 = ggplot(data = data.frame(X3 = X[, 3], g3 = (Y - fit_g1$fitted - fit_g2$fitted)),
            aes(X3, g3)) +
  geom_point() +
  geom_smooth(method = "loess", show.legend = TRUE) +
  geom_line(data = df.low_g3, aes(x, y), color = "red") +
  geom_line(data = df.high_g3, aes(x, y), color = "red")
Y = I(g1(X[, 1]), 0) + I(g2(X[, 2]), 0) + I(g3(X[, 3]), 0) + I(g4(X[, 4]), 1) + eps
fit_g4 <- loess(
  Y ~ x,
  family = 'symmetric',
  degree = 2,
  span = 0.9,
  data = data.frame(
    x = X[, 4],
    Y = (Y - fit_g1$fitted - fit_g2$fitted - fit_g3$fitted),
    surface = "direct"
  )
)
out_g4 <- predict(fit_g4,
                  newdata = data.frame(newx = x),
                  se = TRUE)
low_g4 <- out_g4$fit - qnorm(0.975) * out_g4$se.fit
high_g4 <- out_g4$fit + qnorm(0.975) * out_g4$se.fit
df.low_g4 <- data.frame(x = x, y = low_g4)
df.high_g4 <- data.frame(x = x, y = high_g4)
P4 = ggplot(data = data.frame(
  X4 = X[, 4],
  g4 = (Y - fit_g1$fitted - fit_g2$fitted - fit_g3$fitted)
),
aes(X4, g4)) +
  geom_point() +
  geom_smooth(method = "loess", show.legend = TRUE) +
  geom_line(data = df.low_g4, aes(x, y), color = "red") +
  geom_line(data = df.high_g4, aes(x, y), color = "red")
cowplot::plot_grid(P1, P2, P3, P4, align = "vh")
result:

参考文献
https://academic.uprm.edu/wrolke/esma6836/smooth.html
Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models, Vol. 43 of Monographs on Statistics and Applied Probability, Chapman and Hall, London.
Opsomer, J. and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regression, Annals of Statistics 25: 186-211.
Mammen, E., Linton, O. and Nielsen, J. P. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions, Annals of Statistics 27: 1443-1490.














![[SpringBoot]创建聚合项目](https://img-blog.csdnimg.cn/0d387290d69340128ef1df004aeb2f76.png)




