 
 
 
 
文章目录
- 1、核心数据结构
- 1.1 gpio_led_platform_data
- 1.2 gpio_leds_priv
- 1.3 gpio_led
- 1.4 gpio_led_data
- 1.5 led_classdev
- 1.6 led_trigger
 
- 2、数据结构之间联系
 
上篇文章,我们熟悉了
LED子系统的框架以及其相关的目录结构,接下来我们进一步分析LED子系统的核心数据结构
1、核心数据结构
1.1 gpio_led_platform_data
struct gpio_led_platform_data {
    int 		num_leds;
    const struct gpio_led *leds;
#define GPIO_LED_NO_BLINK_LOW	0	/* No blink GPIO state low */
#define GPIO_LED_NO_BLINK_HIGH	1	/* No blink GPIO state high */
#define GPIO_LED_BLINK		2	/* Please, blink */
    gpio_blink_set_t	gpio_blink_set;
};
结构体名称:gpio_led_platform_data
文件位置:include/linux/leds.h
主要作用:LED的平台数据,用于对LED硬件设备的统一管理
这个结构体用于父节点向子节点传递的数据时使用
1.2 gpio_leds_priv
struct gpio_leds_priv {
    int num_leds;
    struct gpio_led_data leds[];
};
结构体名称:gpio_leds_priv
文件位置:drivers/leds/leds-gpio.c
主要作用:LED驱动的私有数据类型,管理全部的LED设备。
这里的
num_leds通过解析设备树的子节点的个数来获取
leds[]根据获取的num_leds个数,分配对应的空间,来初始化相关数据
1.3 gpio_led
/* For the leds-gpio driver */
struct gpio_led {
    const char *name;					// LED名称
    const char *default_trigger;		// 默认触发类型	
    unsigned 	gpio;					// GPIO编号
    unsigned	active_low : 1;			// 低电平有效
    unsigned	retain_state_suspended : 1;
    unsigned	panic_indicator : 1;
    unsigned	default_state : 2;		// 默认状态
    unsigned	retain_state_shutdown : 1;
    /* default_state should be one of LEDS_GPIO_DEFSTATE_(ON|OFF|KEEP) */
    struct gpio_desc *gpiod;			// GPIO Group
};
结构体名称:gpio_led
文件位置:include/linux/leds.h
主要作用:LED的硬件描述结构,包括名称,GPIO编号,有效电平等等信息。
该结构体的信息大多由解析设备树获得,将设备树中
label解析为name,gpios解析为gpiod,linux,default-trigger解析为default_trigger等
1.4 gpio_led_data
struct gpio_led_data {
    struct led_classdev cdev;		// LED Class
    struct gpio_desc *gpiod;		// GPIO description
    u8 can_sleep;					
    u8 blinking;					// 闪烁
    gpio_blink_set_t platform_gpio_blink_set;	// 闪烁设置
};
结构体名称:gpio_led_data
文件位置:drivers/leds/leds-gpio.c
主要作用:LED相关数据信息,主要在于led_classdev,用于注册设备节点信息
由设备树解析出来的
gpio_led,然后将部分属性赋值到gpio_led_data中,并且初始化led_classdev相关属性,并且实现led_classdev结构体中的部分函数。
1.5 led_classdev
struct led_classdev {
    const char		*name;
    enum led_brightness	 brightness;
    enum led_brightness	 max_brightness;
    int			 flags;
    /* Lower 16 bits reflect status */
#define LED_SUSPENDED		BIT(0)
#define LED_UNREGISTERING	BIT(1)
    /* Upper 16 bits reflect control information */
#define LED_CORE_SUSPENDRESUME	BIT(16)
#define LED_SYSFS_DISABLE	BIT(17)
#define LED_DEV_CAP_FLASH	BIT(18)
#define LED_HW_PLUGGABLE	BIT(19)
#define LED_PANIC_INDICATOR	BIT(20)
#define LED_BRIGHT_HW_CHANGED	BIT(21)
#define LED_RETAIN_AT_SHUTDOWN	BIT(22)
    /* set_brightness_work / blink_timer flags, atomic, private. */
    unsigned long		work_flags;
#define LED_BLINK_SW			0
#define LED_BLINK_ONESHOT		1
#define LED_BLINK_ONESHOT_STOP		2
#define LED_BLINK_INVERT		3
#define LED_BLINK_BRIGHTNESS_CHANGE 	4
#define LED_BLINK_DISABLE		5
    /* Set LED brightness level
     * Must not sleep. Use brightness_set_blocking for drivers
     * that can sleep while setting brightness.
     */
    void		(*brightness_set)(struct led_classdev *led_cdev,
                      enum led_brightness brightness);
    /*
     * Set LED brightness level immediately - it can block the caller for
     * the time required for accessing a LED device register.
     */
    int (*brightness_set_blocking)(struct led_classdev *led_cdev,
                       enum led_brightness brightness);
    /* Get LED brightness level */
    enum led_brightness (*brightness_get)(struct led_classdev *led_cdev);
    /*
     * Activate hardware accelerated blink, delays are in milliseconds
     * and if both are zero then a sensible default should be chosen.
     * The call should adjust the timings in that case and if it can't
     * match the values specified exactly.
     * Deactivate blinking again when the brightness is set to LED_OFF
     * via the brightness_set() callback.
     */
    int		(*blink_set)(struct led_classdev *led_cdev,
                     unsigned long *delay_on,
                     unsigned long *delay_off);
    struct device		*dev;
    const struct attribute_group	**groups;
    struct list_head	 node;			/* LED Device list */
    const char		*default_trigger;	/* Trigger to use */
    unsigned long		 blink_delay_on, blink_delay_off;
    struct timer_list	 blink_timer;
    int			 blink_brightness;
    int			 new_blink_brightness;
    void			(*flash_resume)(struct led_classdev *led_cdev);
    struct work_struct	set_brightness_work;
    int			delayed_set_value;
#ifdef CONFIG_LEDS_TRIGGERS
    /* Protects the trigger data below */
    struct rw_semaphore	 trigger_lock;
    struct led_trigger	*trigger;
    struct list_head	 trig_list;
    void			*trigger_data;
    /* true if activated - deactivate routine uses it to do cleanup */
    bool			activated;
#endif
#ifdef CONFIG_LEDS_BRIGHTNESS_HW_CHANGED
    int			 brightness_hw_changed;
    struct kernfs_node	*brightness_hw_changed_kn;
#endif
    /* Ensures consistent access to the LED Flash Class device */
    struct mutex		led_access;
};
结构体名称:led_classdev
文件位置:include/linux/leds.h
主要作用:该结构体所包括的内容较多,主要有以下几个功能
- LED亮度控制功能
- LED闪烁功能控制
- 创建sysfs文件节点,向上提供用户访问接口
由上面可知,在创建
gpio_led_data时,顺便初始化led_classdev结构体,赋值相关属性以及部分回调函数,最终将led_classdev注册进入LED子系统框架中,在sysfs中创建对应的文件节点。
1.6 led_trigger
struct led_trigger {
    /* Trigger Properties */
    const char	 *name;
    int		(*activate)(struct led_classdev *led_cdev);
    void		(*deactivate)(struct led_classdev *led_cdev);
    /* LEDs under control by this trigger (for simple triggers) */
    rwlock_t	  leddev_list_lock;
    struct list_head  led_cdevs;
    /* Link to next registered trigger */
    struct list_head  next_trig;
    const struct attribute_group **groups;
};
结构体名称:led_trigger
文件位置:include/linux/leds.h
主要作用:提供触发控制策略及功能
该结构体,由打开相应的
trigger触发状态后创建,并与led_classdev结构体关联。
2、数据结构之间联系
上文已经大致说明了各个结构体之间的关系,下面再展开说明一下
- 设备树解析:通过gpio_led_probe接口,解析设备树信息,分配给结构体gpio_leds_priv
- LED设备的创建:解析完设备树后,要创建- LED设备,通过接口- create_gpio_led,将- gpio_leds_priv的部分信息赋值给- gpio_led_data,并且初始化- led_classdev属性信息和回调函数
- LED设备注册:创建完- led_classdev结构体后,调用- devm_of_led_classdev_register将- LED设备注册进入- LED子系统
- LED触发:如果设置了某种触发模式,将会分配并赋值- led_trigger结构体,并于- led_classdev关联起来,注册进入- LED子系统中。
最后,绘制一份各个数据结构之间的关系图,如下:

点赞+关注,永远不迷路
 
 



















