和我一开始想的不太一样
一开始想的也是排序,然后双指针,但是我想的双指针是l=1,r=n的,因为我没注意到极差尽可能小这个条件可以转化为区间长度最短
其实就是尺取法,然后合法性就是这个区间内的数的所有因子能填满1~m这些格子
找出最短的区间即可
题意:

Code:
#include <bits/stdc++.h>
#define int long long
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
using namespace std;
const int mxn=1e5+10;
const int mxe=1e5+10;
const int mod=998244353;
vector<int> F[mxn];
int N,M,ok=0,tot=0;
int a[mxn],cnt[mxn];
void init(){
	for(int i=1;i<=1e5;i++){
		for(int j=i;j<=1e5;j+=i){
			F[j].push_back(i);
		}
	}
}
void upd(int x,int k){
	if(x>M) return;
	if(k==1){
		cnt[x]++;
		if(cnt[x]==1) tot++;
	}else{
		cnt[x]--;
		if(cnt[x]==0) tot--;
	}
	ok=(tot==M);
}
void solve(){
	tot=0,ok=0;
	cin>>N>>M;
	for(int i=0;i<=M;i++) cnt[i]=0;
	for(int i=1;i<=N;i++) cin>>a[i];
	sort(a+1,a+1+N);
	int r=1,ans=1e9;
	for(int l=1;l<=N;l++){
		while(!ok&&r<=N){
			for(int j=0;j<F[a[r]].size();j++) upd(F[a[r]][j],1);
			r++;
		}
		if(ok&&l<=r) ans=min(ans,a[r-1]-a[l]);
		for(int j=0;j<F[a[l]].size();j++) upd(F[a[l]][j],-1);
	}
	if(ans==1e9) ans=-1;
	cout<<ans<<'\n';
}
signed main(){
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int __=1;cin>>__;
	init();
    while(__--)solve();return 0;
}



















