一、接上章
栈与队列的中等、困难题。
 堆是一块动态内存
 栈是先进后出的堆的一种方法
 队列是一种先进先出的线性表
二、题
2.5 150 逆波兰表达式求值
很有意思的一道题,将中缀表达式 4 + 13 / 5,转化为后缀表达式之后:["4", "13", "5", "/", "+"],就不一样了,计算机可以利用栈来顺序处理,不需要考虑优先级了。也不用回退了, 所以后缀表达式对计算机来说是非常友好的。
 
1、创建存放数据的stack
 2、判断此时放入stack的是否为“±*/”,如果是则pop前两个算,并将结果push进去;如果不是则pop数
 3、最后stack只剩一个数,输出他
PS:不用管这儿的数据结构,看核心思想
int evalRPN(vector<string>& tokens) {
        // 力扣修改了后台测试数据,需要用longlong
        stack<long long> st; 
        for (int i = 0; i < tokens.size(); i++) {
            if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/") {
                long long num1 = st.top();
                st.pop();
                long long num2 = st.top();
                st.pop();
                if (tokens[i] == "+") st.push(num2 + num1);
                else if (tokens[i] == "-") st.push(num2 - num1);
                else if (tokens[i] == "*") st.push(num2 * num1);
                else if (tokens[i] == "/") st.push(num2 / num1);
            } else {
                st.push(stoll(tokens[i]));
            }
        }
        int result = st.top();
        return result;
}
2.6 239 滑动窗口最大值(单调队列)
我们需要一个单调队列,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么。
 
 设计单调队列的时候,pop和push操作要保持如下规则:
 1、pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素。否则不操作
 2、push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止。
 单调队列代码设计如下:
class MyQueue { //单调队列(从大到小)
public:
    deque<int> que; // 使用deque来实现单调队列
    // 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
    // 同时pop之前判断队列当前是否为空。
    void pop(int value) {
        if (!que.empty() && value == que.front()) {
            que.pop_front();
        }
    }
    // 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
    // 这样就保持了队列里的数值是单调从大到小的了。
    void push(int value) {
        while (!que.empty() && value > que.back()) {
            que.pop_back();
        }
        que.push_back(value);
    }
    // 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
    int front() {
        return que.front();
    }
};
之后使用这个MyQueue
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        MyQueue que;
        vector<int> result;
        for (int i = 0; i < k; i++) { // 先将前k的元素放进队列
            que.push(nums[i]);
        }
        result.push_back(que.front()); // result 记录前k的元素的最大值
        for (int i = k; i < nums.size(); i++) {
            que.pop(nums[i - k]); // 滑动窗口移除最前面元素
            que.push(nums[i]); // 滑动窗口前加入最后面的元素
            result.push_back(que.front()); // 记录对应的最大值
        }
        return result;
}
2.7 347 前 K 个高频元素(优先级队列)
要统计元素出现频率
 对频率排序
 找出前K个高频元素
什么是优先级队列呢?
其实就是一个披着队列外衣的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。
// 时间复杂度:O(nlogk)
// 空间复杂度:O(n)
class Solution {
public:
    // 小顶堆
    class mycomparison {
    public:
        bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
            return lhs.second > rhs.second;
        }
    };
    vector<int> topKFrequent(vector<int>& nums, int k) {
        // 要统计元素出现频率
        unordered_map<int, int> map; // map<nums[i],对应出现的次数>
        for (int i = 0; i < nums.size(); i++) {
            map[nums[i]]++;
        }
        // 对频率排序
        // 定义一个小顶堆,大小为k
        priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;
        // 用固定大小为k的小顶堆,扫面所有频率的数值
        for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {
            pri_que.push(*it);
            if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
                pri_que.pop();
            }
        }
        // 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组
        vector<int> result(k);
        for (int i = k - 1; i >= 0; i--) {
            result[i] = pri_que.top().first;
            pri_que.pop();
        }
        return result;
    }
};


















