设计模式 --- 行为型模式

news2025/5/18 18:25:01

一、概述

行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。

行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。

行为型模式分为:

  • 模板方法模式
  • 策略模式
  • 命令模式
  • 职责链模式
  • 状态模式
  • 观察者模式
  • 中介者模式
  • 迭代器模式
  • 访问者模式
  • 备忘录模式
  • 解释器模式

以上 11 种行为型模式,除了模板方法模式和解释器模式是类行为型模式,其他的全部属于对象行为型模式。

 
 

二、模板方法模式

2.1、概述

在面向对象程序设计过程中,程序员常常会遇到这种情况:设计一个系统时知道了算法所需的关键步骤,而且确定了这些步骤的执行顺序,但某些步骤的具体实现还未知,或者说某些步骤的实现与具体的环境相关。

例如,去银行办理业务一般要经过以下4个流程:取号、排队、办理具体业务、对银行工作人员进行评分等,其中取号、排队和对银行工作人员进行评分的业务对每个客户是一样的,可以在父类中实现,但是办理具体业务却因人而异,它可能是存款、取款或者转账等,可以延迟到子类中实现。

定义:

定义一个操作中的算法骨架,而将算法的一些步骤延迟到子类中,使得子类可以不改变该算法结构的情况下重定义该算法的某些特定步骤。

 

2.2、结构

模板方法(Template Method)模式包含以下主要角色:

  • 抽象类(Abstract Class):负责给出一个算法的轮廓和骨架。它由一个模板方法和若干个基本方法构成。

    • 模板方法:定义了算法的骨架,按某种顺序调用其包含的基本方法。

    • 基本方法:是实现算法各个步骤的方法,是模板方法的组成部分。基本方法又可以分为三种:

      • 抽象方法(Abstract Method) :一个抽象方法由抽象类声明、由其具体子类实现。

      • 具体方法(Concrete Method) :一个具体方法由一个抽象类或具体类声明并实现,其子类可以进行覆盖也可以直接继承。

      • 钩子方法(Hook Method) :在抽象类中已经实现,包括用于判断的逻辑方法和需要子类重写的空方法两种。

        一般钩子方法是用于判断的逻辑方法,这类方法名一般为isXxx,返回值类型为boolean类型。

  • 具体子类(Concrete Class):实现抽象类中所定义的抽象方法和钩子方法,它们是一个顶级逻辑的组成步骤。

 

2.3、案例实现

【例】炒菜

炒菜的步骤是固定的,分为倒油、热油、倒蔬菜、倒调料品、翻炒等步骤。现通过模板方法模式来用代码模拟。类图如下:

在这里插入图片描述

代码如下:

public abstract class AbstractClass {
    
    public final void cookProcess() {
        //第一步:倒油
        this.pourOil();
        //第二步:热油
        this.heatOil();
        //第三步:倒蔬菜
        this.pourVegetable();
        //第四步:倒调味料
        this.pourSauce();
        //第五步:翻炒
        this.fry();
    }

    public void pourOil() {
        System.out.println("倒油");
    }

    //第二步:热油是一样的,所以直接实现
    public void heatOil() {
        System.out.println("热油");
    }

    //第三步:倒蔬菜是不一样的(一个下包菜,一个是下菜心)
    public abstract void pourVegetable();

    //第四步:倒调味料是不一样
    public abstract void pourSauce();


    //第五步:翻炒是一样的,所以直接实现
    public void fry(){
        System.out.println("炒啊炒啊炒到熟啊");
    }
}

public class ConcreteClass_BaoCai extends AbstractClass {

    @Override
    public void pourVegetable() {
        System.out.println("下锅的蔬菜是包菜");
    }

    @Override
    public void pourSauce() {
        System.out.println("下锅的酱料是辣椒");
    }
}

public class ConcreteClass_CaiXin extends AbstractClass {
    @Override
    public void pourVegetable() {
        System.out.println("下锅的蔬菜是菜心");
    }

    @Override
    public void pourSauce() {
        System.out.println("下锅的酱料是蒜蓉");
    }
}

public class Client {
    public static void main(String[] args) {
        //炒手撕包菜
        ConcreteClass_BaoCai baoCai = new ConcreteClass_BaoCai();
        baoCai.cookProcess();

        //炒蒜蓉菜心
        ConcreteClass_CaiXin caiXin = new ConcreteClass_CaiXin();
        caiXin.cookProcess();
    }
}

注意:为防止恶意操作,一般模板方法都加上 final 关键词。

 

2.4、优缺点

优点:

  • 提高代码复用性

    将相同部分的代码放在抽象的父类中,而将不同的代码放入不同的子类中。

  • 实现了反向控制

    通过一个父类调用其子类的操作,通过对子类的具体实现扩展不同的行为,实现了反向控制 ,并符合“开闭原则”。

缺点:

  • 对每个不同的实现都需要定义一个子类,这会导致类的个数增加,系统更加庞大,设计也更加抽象。
  • 父类中的抽象方法由子类实现,子类执行的结果会影响父类的结果,这导致一种反向的控制结构,它提高了代码阅读的难度。

 

2.5、适用场景

  • 算法的整体步骤很固定,但其中个别部分易变时,这时候可以使用模板方法模式,将容易变的部分抽象出来,供子类实现。
  • 需要通过子类来决定父类算法中某个步骤是否执行,实现子类对父类的反向控制。

 

2.6、JDK源码解析

InputStream类就使用了模板方法模式。在InputStream类中定义了多个 read() 方法,如下:

public abstract class InputStream implements Closeable {
    //抽象方法,要求子类必须重写
    public abstract int read() throws IOException;

    public int read(byte b[]) throws IOException {
        return read(b, 0, b.length);
    }

    public int read(byte b[], int off, int len) throws IOException {
        if (b == null) {
            throw new NullPointerException();
        } else if (off < 0 || len < 0 || len > b.length - off) {
            throw new IndexOutOfBoundsException();
        } else if (len == 0) {
            return 0;
        }

        int c = read(); //调用了无参的read方法,该方法是每次读取一个字节数据
        if (c == -1) {
            return -1;
        }
        b[off] = (byte)c;

        int i = 1;
        try {
            for (; i < len ; i++) {
                c = read();
                if (c == -1) {
                    break;
                }
                b[off + i] = (byte)c;
            }
        } catch (IOException ee) {
        }
        return i;
    }
}

从上面代码可以看到,无参的 read() 方法是抽象方法,要求子类必须实现。而 read(byte b[]) 方法调用了 read(byte b[], int off, int len) 方法,所以在此处重点看的方法是带三个参数的方法。

在该方法中第18行、27行,可以看到调用了无参的抽象的 read() 方法。

总结如下: 在InputStream父类中已经定义好了读取一个字节数组数据的方法是每次读取一个字节,并将其存储到数组的第一个索引位置,读取len个字节数据。具体如何读取一个字节数据呢?由子类实现。

 
 

三、策略模式

3.1、概述

先看下面的图片,我们去旅游选择出行模式有很多种,可以骑自行车、可以坐汽车、可以坐火车、可以坐飞机。

在这里插入图片描述

作为一个程序猿,开发需要选择一款开发工具,当然可以进行代码开发的工具有很多,可以选择Idea进行开发,也可以使用eclipse进行开发,也可以使用其他的一些开发工具。

在这里插入图片描述

定义:

​ 该模式定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的变化不会影响使用算法的客户。策略模式属于对象行为模式,它通过对算法进行封装,把使用算法的责任和算法的实现分割开来,并委派给不同的对象对这些算法进行管理。

 

3.2、结构

策略模式的主要角色如下:

  • 抽象策略(Strategy)类:这是一个抽象角色,通常由一个接口或抽象类实现。此角色给出所有的具体策略类所需的接口。
  • 具体策略(Concrete Strategy)类:实现了抽象策略定义的接口,提供具体的算法实现或行为。
  • 环境(Context)类:持有一个策略类的引用,最终给客户端调用。

 

3.3、案例实现

【例】促销活动

一家百货公司在定年度的促销活动。针对不同的节日(春节、中秋节、圣诞节)推出不同的促销活动,由促销员将促销活动展示给客户。类图如下:

代码如下:

定义百货公司所有促销活动的共同接口

public interface Strategy {
    void show();
}

定义具体策略角色(Concrete Strategy):每个节日具体的促销活动

//为春节准备的促销活动A
public class StrategyA implements Strategy {

    public void show() {
        System.out.println("买一送一");
    }
}

//为中秋准备的促销活动B
public class StrategyB implements Strategy {

    public void show() {
        System.out.println("满200元减50元");
    }
}

//为圣诞准备的促销活动C
public class StrategyC implements Strategy {

    public void show() {
        System.out.println("满1000元加一元换购任意200元以下商品");
    }
}

定义环境角色(Context):用于连接上下文,即把促销活动推销给客户,这里可以理解为销售员

public class SalesMan {                        
    //持有抽象策略角色的引用                              
    private Strategy strategy;                 
                                               
    public SalesMan(Strategy strategy) {       
        this.strategy = strategy;              
    }                                          
                                               
    //向客户展示促销活动                                
    public void salesManShow(){                
        strategy.show();                       
    }                                          
}                                              

 

3.4、优缺点

1、优点:

  • 策略类之间可以自由切换

    由于策略类都实现同一个接口,所以使它们之间可以自由切换。

  • 易于扩展

    增加一个新的策略只需要添加一个具体的策略类即可,基本不需要改变原有的代码,符合“开闭原则“

  • 避免使用多重条件选择语句(if else),充分体现面向对象设计思想。

2、缺点:

  • 客户端必须知道所有的策略类,并自行决定使用哪一个策略类。
  • 策略模式将造成产生很多策略类,可以通过使用享元模式在一定程度上减少对象的数量。

 

3.5、使用场景

  • 一个系统需要动态地在几种算法中选择一种时,可将每个算法封装到策略类中。
  • 一个类定义了多种行为,并且这些行为在这个类的操作中以多个条件语句的形式出现,可将每个条件分支移入它们各自的策略类中以代替这些条件语句。
  • 系统中各算法彼此完全独立,且要求对客户隐藏具体算法的实现细节时。
  • 系统要求使用算法的客户不应该知道其操作的数据时,可使用策略模式来隐藏与算法相关的数据结构。
  • 多个类只区别在表现行为不同,可以使用策略模式,在运行时动态选择具体要执行的行为。

  

3.6、JDK源码解析

Comparator 中的策略模式。在Arrays类中有一个 sort() 方法,如下:

public class Arrays{
    public static <T> void sort(T[] a, Comparator<? super T> c) {
        if (c == null) {
            sort(a);
        } else {
            if (LegacyMergeSort.userRequested)
                legacyMergeSort(a, c);
            else
                TimSort.sort(a, 0, a.length, c, null, 0, 0);
        }
    }
}

Arrays就是一个环境角色类,这个sort方法可以传一个新策略让Arrays根据这个策略来进行排序。就比如下面的测试类。

public class demo {
    public static void main(String[] args) {

        Integer[] data = {12, 2, 3, 2, 4, 5, 1};
        // 实现降序排序
        Arrays.sort(data, new Comparator<Integer>() {
            public int compare(Integer o1, Integer o2) {
                return o2 - o1;
            }
        });
        System.out.println(Arrays.toString(data)); //[12, 5, 4, 3, 2, 2, 1]
    }
}

这里我们在调用Arrays的sort方法时,第二个参数传递的是Comparator接口的子实现类对象。所以Comparator充当的是抽象策略角色,而具体的子实现类充当的是具体策略角色。环境角色类(Arrays)应该持有抽象策略的引用来调用。那么,Arrays类的sort方法到底有没有使用Comparator子实现类中的 compare() 方法吗?让我们继续查看TimSort类的 sort() 方法,代码如下:

class TimSort<T> {
    static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
                         T[] work, int workBase, int workLen) {
        assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;

        int nRemaining  = hi - lo;
        if (nRemaining < 2)
            return;  // Arrays of size 0 and 1 are always sorted

        // If array is small, do a "mini-TimSort" with no merges
        if (nRemaining < MIN_MERGE) {
            int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
            binarySort(a, lo, hi, lo + initRunLen, c);
            return;
        }
        ...
    }   
        
    private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,Comparator<? super T> c) {
        assert lo < hi;
        int runHi = lo + 1;
        if (runHi == hi)
            return 1;

        // Find end of run, and reverse range if descending
        if (c.compare(a[runHi++], a[lo]) < 0) { // Descending
            while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
                runHi++;
            reverseRange(a, lo, runHi);
        } else {                              // Ascending
            while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
                runHi++;
        }

        return runHi - lo;
    }
}

上面的代码中最终会跑到 countRunAndMakeAscending() 这个方法中。我们可以看见,只用了compare方法,所以在调用Arrays.sort方法只传具体compare重写方法的类对象就行,这也是Comparator接口中必须要子类实现的一个方法。

 

 

四、命令模式

后续补充...

五、职责链模式

六、状态模式

七、观察者模式

八、中介者模式

九、迭代器模式

十、访问者模式

十一、备忘录模式

十二、解释器模式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/451345.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《安富莱嵌入式周报》第310期:集成大语言模型的开源调试器ChatDBG, 多功能开源计算器,M7内核航空航天芯片评估板, Zigbee PRO规范

周报汇总地址&#xff1a;嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 视频版&#xff1a; https://www.bilibili.com/video/BV1GM41157tV/ 《安富莱嵌入式周报》第310期&#xff1a;集成大语…

Spring Gateway + Oauth2 + Jwt网关统一鉴权

之前文章里说过&#xff0c;分布式系统的鉴权有两种方式&#xff0c;一是在网关进行统一的鉴权操作&#xff0c;二是在各个微服务里单独鉴权。 第二种方式比较常见&#xff0c;代码网上也是很多。今天主要是说第一种方式。 1.网关鉴权的流程 重要前提&#xff1a;需要收集各个…

循环代码模型构建方法

循环结构是源代码程序的重要结构&#xff0c;然而即使是简单的循环程序&#xff0c;也很容易出错&#xff0c;循环中的很多错误往往需要执行多次或者在某些特定的情况下才能被发现&#xff0c;检测这些错误的代价很高&#xff0c;所以需要重点开展对软件循环代码的安全性分析研…

简单聊下HBase

大家好&#xff0c;我是易安&#xff01; Google发表了三篇论文&#xff0c;即GFS、MapReduce和BigTable&#xff0c;被誉为“三驾马车”&#xff0c;开启了大数据时代。今天我们来聊一下BigTable对应的NoSQL系统HBase&#xff0c;看看它是如何处理海量数据的。 在计算机数据存…

Mybatis 全局配置文件 mybatis-config.xml

1、全局配置文件的用处 mybatis通过配置文件可以配置数据源、事务管理器、运行时行为、处理别名、类型处理、插件等信息。在mybatis应用初始化时&#xff0c;程序会解析全局配置文件&#xff0c;使用配置的信息实例化Configuration组件&#xff0c;完成基本配置的初始化。在my…

图论 Union-Find 并查集算法

union-find API&#xff1a; class UF { public:/* 将 p 和 q 连接 */void union(int p, int q);/* 判断 p 和 q 是否连通 */bool connected(int p, int q);/* 返回图中有多少个连通分量 */int count(); };连通性概念 触点&#xff1a;每个单独的不与任何点相连的点叫做触点 连…

绿色智慧档案馆构想之智慧档案馆环境综合管控一体化平台

【智慧档案馆整体效果图】 智慧档案库房一体化平台通过智慧档案管理&#xff0c;实现智慧档案感知协同处置功能&#xff1b;实现对档案实体的智能化识别、定位、跟踪监控&#xff1b;实现对档案至智能密集架、空气恒湿净化一体设备、安防设备&#xff0c;门禁设备等智能化巡检与…

camunda流程引擎receive task节点用途

Camunda的Receive Task用于在流程中等待外部系统或服务发送消息。当接收到消息后&#xff0c;Receive Task将流程继续执行。Receive Task通常用于与Send Task配合使用&#xff0c;以便流程可以在发送和接收消息之间进行交互。 Receive Task可以用于以下场景&#xff1a; 1、等…

DAB-DETR代码学习记录之模型解析

DAB-DETR是吸收了Deformable-DETR&#xff0c;Conditional-DETR&#xff0c;Anchor-DETR等基础上完善而来的。其主要贡献为将query初始化为x,y,w,h思维坐标形式。 这篇博文主要从代码角度来分析DAB-DETR所完成的工作。 DAB-DETR主要是对Decoder模型进行改进。博主也主要是对Dec…

【C++】6. 内联函数

文章目录 前言一、宏函数二、内联函数三、内联函数的易错点 前言 当我们调用函数时&#xff0c;是有很多消耗的。其中最大的销毁就是为函数开辟空间 - 函数栈帧。 如果我们有一个函数&#xff0c;很短&#xff0c;而且要调用很多次&#xff0c;比如Swap()。它所造成消耗就比较…

机器学习笔记Python笔记:HMM(隐马尔科夫模型)

1 引子&#xff1a;猜天气小游戏 一对异地恋的情侣&#xff0c;女朋友想根据男友的心情猜测男友所在城市的天气 1.1 天气和心情一定一一对应 晴天——>高兴雨天——>烦躁 可以根据心情唯一确定天气 1.2 天气和心情没有一一对应 晴天——>80%高兴&#xff0c;20%烦…

有关实现深拷贝的四种方法

深拷贝与浅拷贝: 在开始之前我们需要先了解一下什么是浅拷贝和深拷贝&#xff0c;其实深拷贝和浅拷贝都是针对的引用类型&#xff0c;JS中的变量类型分为值类型&#xff08;基本类型&#xff09;和引用类型&#xff1b;对值类型进行复制操作会对值进行一份拷贝&#xff0c;而对…

Logstash学习

一、Logstash基础 1、什么是Logstash logstash是一个数据抽取工具&#xff0c;将数据从一个地方转移到另一个地方。下载地址&#xff1a;https://www.elastic.co/cn/downloads/logstash logstash之所以功能强大和流行&#xff0c;还与其丰富的过滤器插件是分不开的&#xff…

CDGP认证|ChatGPT的出现,对数据治理行业冲击如何?

ChatGPT的出现对数据治理有很多好处&#xff0c;其中最明显的是提供了更高效、更准确和更自动化的数据处理和分析服务,可以帮助企业和组织更好地管理和利用数据资源&#xff0c;提高数据质量和决策效率。此外&#xff0c;ChatGPT还能够发现隐藏在大量数据中的信息和趋势&#x…

OJ练习第82题——填充书架

填充书架 力扣链接&#xff1a;1105. 填充书架 题目描述 给定一个数组 books &#xff0c;其中 books[i] [thicknessi, heighti] 表示第 i 本书的厚度和高度。你也会得到一个整数 shelfWidth 。 按顺序 将这些书摆放到总宽度为 shelfWidth 的书架上。 先选几本书放在书架…

Nexus 组件发布失败、npm 登录失败 解决过程

目录 参考发布文章进行打包 提示发布成功&#xff0c;但在 Nexus 里没发现组件 测试 yarn 发布 测试 npm 发布&#xff08;解决登录失败&#xff09; Nexus 设置 Sonatype Nexus Repository Manager 相关权限 参考发布文章进行打包 整体发布&#xff1a;根目录运行 yarn r…

直播软件app开发:如何保证音视频质量?

随着社交媒体的发展&#xff0c;视频直播已成为越来越流行的社交方式。直播软件app开发也因此成为了一个热门话题。在开发直播软件app时&#xff0c;保证音视频质量是至关重要的。本文将介绍如何确保你的直播软件app在音视频质量方面表现出色。 确定音视频质量标准 首先&…

第七章 建造者模式

文章目录 前言一、传统方式解决盖房子需求完整代码抽象房子类 AbstractHouse实现子类 普通房子实现子类 高楼大厦客户端盖房子 二、引入建造者模式建造者模式的四个角色&#xff1a; 产品、抽象建造者、具体建造者、指挥者完整代码House类 (产品角色)抽象父类&#xff08;抽象建…

CV 领域的 ChatGPT?MetaAI 推出“最强”大视觉模型 SAM

出品人&#xff1a;Towhee 技术团队 随着 ChatGPT 引起一波又一波的“GPT热潮”&#xff0c;自然语言领域又一次成为了人工智能的讨论焦点。大家不由得思考&#xff0c;计算机视觉领域里是否会出现这样一个堪称划时代的模型&#xff1f;在这种万众瞩目的时候&#xff0c;一直处…

Python3《机器学习实战》学习笔记(七):支持向量机原理篇之手撕线性SVM

文章目录 一、SVM介绍二、线性SVM2.1 数学建模2.1.1决策面方程2.1.2"分类间隔"方程2.1.3约束条件2.1.4线性SVM优化问题基本描述2.1.5求解准备(讲讲凸函数)2.1.6拉格朗日函数2.1.7KKT条件2.1.8对偶问题求解2.1.9最后求解 2.2 SMO算法 三、代码实战3.1准备数据 一、SVM…