目录
vector介绍
常见接口
构造函数
迭代器
容量操作
元素访问
增删查改
模拟实现
模拟实现要点图解
整体代码
迭代器失效问题
内部失效
外部失效
深浅拷贝问题
vector介绍
vector是表示可变大小数组的序列式容器。vector采用连续的空间存储元素,大小通过动态增长的方式改变,元素的访问比较高效。
常见接口
构造函数

//构造函数测试 void Vector_Test1() { //无参构造 vector<int> v1; //初始化n个val构造 vector<int> v2(5, 10); //拷贝构造 vector<int> v3(v2); //迭代器区间构造 vector<int> v4(v3.begin(), v3.end()); }
迭代器

如上图所示,正向迭代器的begin指向首元素的迭代器位置,end指向末尾元素的下一个位置,【左闭,右开)。反向迭代器正好相反。
//迭代器测试 void Vector_Test2() { vector<int> vv={ 1,2,3,4,5,6,7,8,9 }; //vector<int>::iterator it = vv.begin(); auto it = vv.begin(); cout << "正向迭代:>" << endl; while (it != vv.end()) { cout << *it << " "; it++; } cout << endl; auto rit = vv.rbegin(); cout << "反向迭代:>" << endl; while (rit != vv.rend()) { cout << *rit << " "; rit++; } cout << endl; }
容量操作

简单接口测试:
//容量测试 void Vector_Test3() { vector<int> vv(10,985); cout <<"size:>" << vv.size() << endl; cout << "capacity:>" << vv.capacity() << endl; cout << "empty? :>" << vv.empty() << endl; }
resize和reserve分析:
resize和reserve都有的共同点就是不会进行缩容,给我空间可以,想缩容,没门!
resize:
void Printf(vector<int> vv) { auto it = vv.begin(); while (it != vv.end()) { cout << *it << " "; it++; } cout << endl; } void Vector_Test4() { vector<int> vv = { 1,2,3,4,5,6,7,8,9 }; vv.resize(15,1); cout << "newsize>size:" << endl; cout << "size:" << vv.size() << endl; cout << "capacity:" << vv.capacity() << endl; Printf(vv); vv.reserve(20); vv.resize(20, 100); cout << "newsize在容量范围内:" << endl; cout << "size:" << vv.size() << endl; cout << "capacity:" << vv.capacity() << endl; Printf(vv); vv.resize(5); cout << "newsize<size:" << endl; cout << "size:" << vv.size()<<endl; cout << "capacity:" << vv.capacity() << endl; Printf(vv); }
reserve:新容量大扩容,新容量下不变!
void Vector_Test5() { vector<int> vv = {1,2,3,4,5}; cout << "----------容量增加,扩容-----------" << endl; cout << "capacity:" << vv.capacity() << endl; vv.reserve(10); cout << "newcapacity:" << vv.capacity() << endl; cout << "----------容量减少,不变-----------" << endl; cout << "capacity:" << vv.capacity() << endl; vv.reserve(5); cout << "newcapacity:" << vv.capacity() << endl; }
默认扩容机制测试: vs下测试,默认按照1.5倍扩容!
void TestVectorExpand() { size_t sz; vector<int> v; //记录每次扩容后的容量大小 sz = v.capacity(); int cnt = 1; for (int i = 0; i < 100; ++i) { v.push_back(i); if (sz != v.capacity()) { sz = v.capacity(); cout << "第" << cnt++<<"次扩容: " << sz << '\n'; } } }
c++11提供的接口,调用后缩容。
void Vector_Test6() { vector<int> vv; cout << "capacity:" << vv.capacity() << endl; vv.reserve(20); cout << "capacity:" << vv.capacity() << endl; vv.resize(10); vv.shrink_to_fit(); cout << "shrink_to_fit_capacity:" << vv.capacity() << endl; }
元素访问

上述两个接口的功能类似,在底层实现上【】检查越界的方式是断言,在release断言会失效。at接口底层检查越界的方式是抛异常,使用上可读性没有【】直观,因为我们比较习惯【】的使用。
void Vector_Test7() { vector<int> vv = { 1,2,3,4,5,6,7,8,9 }; cout <<"[]:>" << vv[3] << endl; cout <<"at:>"<< vv.at(5) << endl; }
增删查改

assign:将新内容赋给向量,替换其当前内容,并相应地修改其大小。
void Vector_Test8() { vector<int> vv = { 1,2,3,4,5,6,7,8,9 }; vector<int> vv2; vv2.assign(vv.begin(), vv.end()); Printf(vv); vv.assign(12, 1); Printf(vv); }
上述剩余接口都比较常用,需要注意的是,在使用插入或者删除后如果后序还要使用it,需要重写接收一下insert和erase返回的迭代器位置,否则会出现迭代器失效的问题,后面会详细讨论。
void Vector_Test9() { vector<int> vv = { 1,2,3,4,5,6,7,8,9 }; auto it = vv.begin(); vv.insert(it,5); vv.insert(it, 5); vv.insert(it, 5); vv.insert(it, 5); it++; *it = 10; }
查找接口统一使用算法中(algorithm)的查找,vector容器中并没有提供查找接口。
模拟实现
模拟实现要点图解

整体代码
	template<class T>
	class vector
	{
	public:
		typedef T* iterator;
		typedef const T* const_iterator;
		iterator being()
		{
			return _start;
		}
		iterator end()
		{
			return _finish;
		}
		const_iterator begin() const
		{
			return _start;
		}
		const_iterator end()const
		{
			return _finish;
		}
		T& operator[](size_t pos)
		{
			return _start[pos];
		}
		T& operator[](size_t pos) const
		{
			return _start[pos];
		}
		//无参构造
		vector()
			:_start(nullptr)
			, _finish(nullptr)
			, _end_of_storage(nullptr)
		{}
		//初始化n个val
		vector(size_t n, const T& val = T())
			:_start(nullptr)
			, _finish(nullptr)
			, _end_of_storage(nullptr)
		{
			reserve(n);
			for (int i = 0; i < n; ++i)
			{
				push_back(val);
			}
		}
			vector(int n, const T & val = T())
				:_start(nullptr)
				, _finish(nullptr)
				, _end_of_storage(nullptr)
			{
				reserve(n);
				for (int i = 0; i < n; ++i)
				{
					push_back(val);
				}
			}
		//代代器区间
		template <class InputIterator>
		vector(InputIterator first, InputIterator last)
			:_start(nullptr)
			, _finish(nullptr)
			, _end_of_storage(nullptr)
		{
			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}
		//拷贝构造
		vector(const vector<T>& v)
			:_start(nullptr)
			, _finish(nullptr)
			, _end_of_storage(nullptr)
		{
			//调用构造
			vector<T> tmp(v.begin(),v.end());
			//将构造好的交换给this 
			swap(tmp);
		}
		//赋值,这里不能给引用,不然赋值变成交换
		vector<T>& operator=(vector<T> v)
		{
			swap(v);
			return *this;
		}
		//析构
		
		void swap(vector<T>& v)
		{
			std::swap(_start,v._start);
			std::swap(_finish, v._finish);
			std::swap(_end_of_storage,v._end_of_storage);
		}
		~vector()
		{
			delete[] _start;
			_start = _finish = _end_of_storage = nullptr;
		}
		//扩容
		void reserve(size_t n)
		{
			if (n > capacity())
			{
				//扩容
				T* tmp = new T[n];
				size_t oldsize = size();
				if (_start)
				{
					//浅拷贝
					//memcpy(tmp, _start, sizeof(T) * oldsize);
					for (size_t i = 0; i < oldsize; i++)
					{
						tmp[i] = _start[i];
					}
					delete[] _start;
				}
				
				//_start的地址变成了新的
				_start = tmp;
				_finish = tmp + oldsize;//_finish的计算要注意
				_end_of_storage = tmp + n;
			}
		}
		//调整size
		void resize(size_t n, T val = T())
		{
			if(n>capacity())
			{
				//扩容
				reserve(n);
			}
			if (n > size())
			{
				//填数据
				while (_finish < _start + n)
				{
					* _finish = val;
					++_finish;
				}
			}
			else
			{
				//删除数据
				_finish = _start + n;
			}
		}
		//返回容量
		size_t capacity() const
		{
			return _end_of_storage - _start;
		}
		//返回size
		size_t size() const
		{
			return _finish - _start;
		}
		//尾插
		void push_back(const T& val)
		{
			if (_finish == _end_of_storage)
			{
				//扩容
				size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity();
				reserve(newcapacity);
				_end_of_storage = _start + newcapacity;
			}
			*_finish = val;
			_finish++;
		}
		//尾删
		void pop_back()
		{
			assert(size()>0);
			--_finish;
		}
		//迭代器失效问题
		//插入
		iterator insert(iterator pos,const T& val)
		{
			assert(pos >= _start);
			assert(pos <= _finish);
			if (_finish == _end_of_storage)
			{
				//记录下pos到 ——start的距离
				size_t len = pos - _start;
				size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity();
				reserve(newcapacity);
				//扩容后会导致迭代器的失效问题
				pos = _start + len;
			}
			//向后挪动数据
			iterator end = _finish - 1;
			while (end >= pos)
			{
				*(end+1) = *end;
				--end;
			}
			*pos = val;
			++_finish;
			return pos;
		}
		//删除
		iterator erase(iterator pos)
		{
			assert(pos >= _start);
			assert(pos < _finish);
			iterator begin = pos + 1;
			while (begin < _finish)
			{
				*(begin - 1) = *(begin);
				++begin;
			}
			--_finish;
			return pos;
		}
		//清除数据
		void clear()
		{
			_finish = _start;
		}
		//判断空
		bool empty() const
		{
			return _start == _finish;
		}
	private:
		iterator _start;
		iterator _finish;
		iterator _end_of_storage;
	}; 
迭代器失效问题
内部失效

外部失效
int main()
{
	vector<int> vv;
	auto it = vv.begin();
	vv.insert(it, 1);
	//读
	cout << *it << endl;
	//cout << (*it)++ << endl;
	return 0;
} 
上述代码中用的是库中的vector,但是同样存在迭代器失效的问题,调用insert接口插入数据后会发生扩容,外部迭代器指向的空间已经被释放了,此时该迭代器已经失效了,当对该位置进行读写操作时就会出现错误!

如果仍然要再次使用it的话,在使用前对it重新赋值就好了。
深浅拷贝问题
void reserve(size_t n)
		{
			if (n > capacity())
			{
				//扩容
				T* tmp = new T[n];
				size_t oldsize = size();
				if (_start)
				{
					//浅拷贝
					//memcpy(tmp, _start, sizeof(T) * oldsize);
					delete[] _start;
				}
				
				//_start的地址变成了新的
				_start = tmp;
				_finish = tmp + oldsize;//_finish的计算要注意
				_end_of_storage = tmp + n;
			}
		} 
void testcopy()
{
	zxy::vector<string> v1;
	string ss("abc");
	v1.push_back(ss);
	v1.push_back(ss);
	v1.push_back(ss);
	v1.push_back(ss);
	//第5次插入发生扩容
	v1.push_back(ss);
} 

问题分析:
当第5次插入数据,发生了扩容。string是自定义类型,并且有资源的申请。浅拷贝完成后,手动的delete[] _start。当析构函数调用时会在次释放该空间,所以这里不能用浅拷贝。

解决办法:换成深拷贝
	//扩容
		void reserve(size_t n)
		{
			if (n > capacity())
			{
				//扩容
				T* tmp = new T[n];
				size_t oldsize = size();
				if (_start)
				{
					for (size_t i = 0; i < oldsize; i++)
					{
						tmp[i] = _start[i];
					}
					delete[] _start;
				}
				
				//_start的地址变成了新的
				_start = tmp;
				_finish = tmp + oldsize;//_finish的计算要注意
				_end_of_storage = tmp + n;
			}
		}
                































