1、原始模型
 
 onnx转caffe报错没有globalaverage层。
 于是转化成:
 
 onnx转化caffe之后,修改prototxt文件,加上globalaverage和reshape层.
 参考:https://blog.csdn.net/z649431508/article/details/113425275
 layer {
 name: “GlobalAveragePool_12”
 type: “Pooling”
 bottom: “107”
 top: “108”
 pooling_param {
 pool: AVE
 global_pooling: true
 }
 }
量化时报错,kernel size is too large, kernel_h = 9
 改成
 layer {
 name: “GlobalAveragePool_12”
 type: “Pooling”
 bottom: “107”
 top: “108”
 pooling_param {
 pool: AVE
 kernel_h:6
 stride_h:6
 kernel_w:8
 stride_w:8
 }
 }
 还是报错,kernel size is too large, kernel_h = 6
 改成
 layer {
 name: “GlobalAveragePool_12”
 type: “Pooling”
 bottom: “107”
 top: “108”
 pooling_param {
 pool: AVE
 kernel_h:4
 stride_h:4
 kernel_w:3
 stride_w:3
 }
 }
 还是报错,kernel size is too large, kernel_h = 4
 应该是这样直接在prototxt里边改不对。














![[STM32F103C8T6]DMA](https://img-blog.csdnimg.cn/9c1164fe90b74b50ac1ebd01fda4a6b4.png)




