454.四数相加II
给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足:
0 <= i, j, k, l < n
 nums1[i] + nums2[j] + nums3[k] + nums4[l] == 0
输入:nums1 = [1,2], nums2 = [-2,-1], nums3 = [-1,2], nums4 = [0,2]
输出:2
解释:
两个元组如下:
1. (0, 0, 0, 1) -> nums1[0] + nums2[0] + nums3[0] + nums4[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> nums1[1] + nums2[1] + nums3[0] + nums4[0] = 2 + (-1) + (-1) + 0 = 0
解法:
之前做了两数之和,用std::unordered_map <int,int> map 存放值和value,然后遍历的时候在map中去查找target - nums[i]是否存在,不存在则添加nums[i]进去。
此题一样可以采用同样的思路,用std::unordered_map <int,int> map 两数之和次数
- 首先定义 一个unordered_map,key放a和b两数之和,value 放a和b两数之和出现的次数。
- 遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中。
- 定义int变量count,用来统计 a+b+c+d = 0 出现的次数。
- 在遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就用count把map中key对应的value也就是出现次数统计出来。
- 最后返回统计值 count 就可以了
C++版本:
class Solution {
public:
    int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
        std::unordered_map<int,int> map;
        for(int a:nums1){
            for(int b : nums2){
                map[a+b]++;
            }
        }
        int count = 0; // 统计a+b+c+d = 0 出现的次数
        // 在遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就把map中key对应的value也就是出现次数统计出来。
        for (int c : nums3) {
            for (int d : nums4) {
                if (map.find(0 - (c + d)) != map.end()) {
                    count += map[0 - (c + d)];
                }
            }
        } 
        return count;
    }
};Python版本:
class Solution(object):
    def fourSumCount(self, nums1, nums2, nums3, nums4):
        # use a dict to store the elements in nums1 and nums2 and their sum
        hashmap = dict()
        for n1 in nums1:
            for n2 in nums2:
                if n1 + n2 in hashmap:
                    hashmap[n1+n2] += 1
                else:
                    hashmap[n1+n2] = 1
        
        # if the -(a+b) exists in nums3 and nums4, we shall add the count
        count = 0
        for n3 in nums3:
            for n4 in nums4:
                key = - n3 - n4
                if key in hashmap:
                    count += hashmap[key]
        return count383. 赎金信
给你两个字符串:ransomNote 和 magazine ,判断 ransomNote 能不能由 magazine 里面的字符构成。
如果可以,返回 true ;否则返回 false 。
magazine 中的每个字符只能在 ransomNote 中使用一次。
输入:ransomNote = "a", magazine = "b" 输出:false
输入:ransomNote = "aa", magazine = "ab" 输出:false
输入:ransomNote = "aa", magazine = "aab" 输出:true
遍历吧,std::unordered_map<char,int> map;存放字符和字符出现的次数,先遍历magazine,统计字符出现的次数,然后遍历ransomNote,最后查找是否出现比0小的数,如果没有,则返回true,如果有则返回false。
C++版本:
class Solution {
public:
    bool canConstruct(string ransomNote, string magazine) {
        std::unordered_map<char,int> map;
        for(char a:magazine){
            map[a]++; 
        }
        for(char a : ransomNote){
            map[a]--;
        }
        for(int i = 0; i<26; i++){
            if(map[i+'a']<0){
                return false;
            }
        }
        return true;
    }
};15. 三数之和
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请
你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
看了解析,此题双指针最简单。

C++版本:
class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
        sort(nums.begin(),nums.end());
        vector<vector<int>> result;
        if(nums[0]>0){
            return result;
        }
        for(int i = 0; i<nums.size(); i++){
            //去重复解
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }         
            int left = i + 1;
            int right = nums.size() - 1;
            while (right > left) {
                if (nums[i] + nums[left] + nums[right] > 0) right--;
                else if (nums[i] + nums[left] + nums[right] < 0) left++;
                else {
                    result.push_back(vector<int>{nums[i], nums[left], nums[right]});
                    // 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
                    while (right > left && nums[right] == nums[right - 1]) right--;
                    while (right > left && nums[left] == nums[left + 1]) left++;
                    // 找到答案时,双指针同时收缩
                    right--;
                    left++;
                }
            }              
        }
        return result; 
    }
};Python版本:
class Solution:
    def threeSum(self, nums: List[int]) -> List[List[int]]:
        
        n=len(nums)
        res=[]
        if(not nums or n<3):
            return []
        nums.sort()
        res=[]
        for i in range(n):
            if(nums[i]>0):
                return res
            if(i>0 and nums[i]==nums[i-1]):
                continue
            L=i+1
            R=n-1
            while(L<R):
                if(nums[i]+nums[L]+nums[R]==0):
                    res.append([nums[i],nums[L],nums[R]])
                    while(L<R and nums[L]==nums[L+1]):
                        L=L+1
                    while(L<R and nums[R]==nums[R-1]):
                        R=R-1
                    L=L+1
                    R=R-1
                elif(nums[i]+nums[L]+nums[R]>0):
                    R=R-1
                else:
                    L=L+1
        return res18. 四数之和
给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):
0 <= a, b, c, d < n
 a、b、c 和 d 互不相同
 nums[a] + nums[b] + nums[c] + nums[d] == target
输入:nums = [1,0,-1,0,-2,2], target = 0 输出:[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
输入:nums = [2,2,2,2,2], target = 8 输出:[[2,2,2,2]]
解法:
和三数之和很类似,同样是采用双指针法。
四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n^2),四数之和的时间复杂度是O(n^3) 。
C++版本:
class Solution {
public:
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        vector<vector<int>> result;
        sort(nums.begin(), nums.end());
        for (int k = 0; k < nums.size(); k++) {
            // 剪枝处理
            if (nums[k] > target && nums[k] >= 0) {
            	break; // 这里使用break,统一通过最后的return返回
            }
            // 对nums[k]去重
            if (k > 0 && nums[k] == nums[k - 1]) {
                continue;
            }
            for (int i = k + 1; i < nums.size(); i++) {
                // 2级剪枝处理
                if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
                    break;
                }
                // 对nums[i]去重
                if (i > k + 1 && nums[i] == nums[i - 1]) {
                    continue;
                }
                int left = i + 1;
                int right = nums.size() - 1;
                while (right > left) {
                    // nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
                    if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
                        right--;
                    // nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出
                    } else if ((long) nums[k] + nums[i] + nums[left] + nums[right]  < target) {
                        left++;
                    } else {
                        result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
                        // 对nums[left]和nums[right]去重
                        while (right > left && nums[right] == nums[right - 1]) right--;
                        while (right > left && nums[left] == nums[left + 1]) left++;
                        // 找到答案时,双指针同时收缩
                        right--;
                        left++;
                    }
                }
            }
        }
        return result;
    }
};



















