文章目录
- 一、CIFAR10 与 lenet5
- 二、CIFAR10 与 ResNet
 
 
一、CIFAR10 与 lenet5

 第一步:准备数据集
 lenet5.py
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
def main():
    batchsz = 128
    CIFAR_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)
    cifar_train = DataLoader(CIFAR_train, batch_size=batchsz, shuffle=True)
    CIFAR_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)
    cifar_test = DataLoader(CIFAR_test, batch_size=batchsz, shuffle=True)
    x,label = iter(cifar_train).next()
    print('x',x.shape,'label:',label.shape)
if __name__ =='__main__':
    main()

第二步:确认Lenet5网络流程结构
 main.py
import torch
from torch import nn
from torch.nn import functional as F
class Lenet5(nn.Module):
    def __init__(self):
        super(Lenet5, self).__init__()
        self.conv_unit = nn.Sequential(
            # x: [b, 3, 32, 32] => [b, 6, ]
            nn.Conv2d(3, 6, kernel_size=5, stride=1, padding=0),
            nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
            #
            nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
        )
        self.fc_unit = nn.Sequential(
            nn.Linear(2,120), # 由输出结果反推(拉直打平)
            nn.ReLU(),
            nn.Linear(120,84),
            nn.ReLU(),
            nn.Linear(84,10)
        )
        #[b,3,32,32]
        tmp = torch.randn(2, 3, 32, 32)
        out = self.conv_unit(tmp)
        #[2,16,5,5]   由输出结果得到
        print('conv out:', out.shape)
def main():
    net = Lenet5()
if __name__ == '__main__':
    main()

 第三步:完善lenet5 结构并使用GPU加速
 lenet5.py
import torch
from torch import nn
from torch.nn import functional as F
class Lenet5(nn.Module):
    def __init__(self):
        super(Lenet5, self).__init__()
        self.conv_unit = nn.Sequential(
            # x: [b, 3, 32, 32] => [b, 6, ]
            nn.Conv2d(3, 6, kernel_size=5, stride=1, padding=0),
            nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
            #
            nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
        )
        self.fc_unit = nn.Sequential(
            nn.Linear(16*5*5,120),
            nn.ReLU(),
            nn.Linear(120,84),
            nn.ReLU(),
            nn.Linear(84,10)
        )
        #[b,3,32,32]
        tmp = torch.randn(2, 3, 32, 32)
        out = self.conv_unit(tmp)
        #[b,16,5,5]
        print('conv out:', out.shape)
    def forward(self,x):
        batchsz = x.size(0)
        # [b, 3, 32, 32] => [b, 16, 5, 5]
        x = self.conv_unit(x)
        #[b, 16, 5, 5] => [b,16*5*5]
        x = x.view(batchsz,16*5*5)
        # [b, 16*5*5] => [b, 10]
        logits = self.fc_unit(x)
        pred = F.softmax(logits,dim=1)
        return logits
def main():
    net = Lenet5()
    tmp = torch.randn(2, 3, 32, 32)
    out = net(tmp)
    print('lenet out:', out.shape)
if __name__ == '__main__':
    main()
main.py
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from lenet5 import Lenet5
from    torch import nn, optim
def main():
    batchsz = 128
    CIFAR_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=True)
    cifar_train = DataLoader(CIFAR_train, batch_size=batchsz, shuffle=True)
    CIFAR_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=True)
    cifar_test = DataLoader(CIFAR_test, batch_size=batchsz, shuffle=True)
    x,label = iter(cifar_train).next()
    print('x',x.shape,'label:',label.shape)
    device = torch.device('cuda')
    model = Lenet5().to(device)
    print(model)
if __name__ =='__main__':
    main()

 第四步:计算交叉熵和准确率,完成迭代
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from lenet5 import Lenet5
from    torch import nn, optim
def main():
    batchsz = 128
    CIFAR_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=True)
    cifar_train = DataLoader(CIFAR_train, batch_size=batchsz, shuffle=True)
    CIFAR_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=True)
    cifar_test = DataLoader(CIFAR_test, batch_size=batchsz, shuffle=True)
    x,label = iter(cifar_train).next()
    print('x',x.shape,'label:',label.shape)
    device = torch.device('cuda')
    model = Lenet5().to(device)
    criteon = nn.CrossEntropyLoss().to(device)
    optimizer = optim.Adam(model.parameters(),lr=1e-3)
    print(model)
    for epoch in range(1000):
        for batchidx, (x,label) in enumerate(cifar_train):
            # [b, 3, 32, 32]
            # [b]
            x,label = x.to(device),label.to(device)
            logits = model(x)
            # logits: [b, 10]
            # label:  [b]
            loss = criteon(logits,label)
            # backprop
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print(epoch,'loss:',loss.item())
        model.eval()
        with torch.no_grad(): #之后代码不需backprop
            total_correct = 0
            total_num = 0
            for x ,label in cifar_test:
                # [b, 3, 32, 32]
                # [b]
                x,label = x.to(device),label.to(device)
                logits = model(x)
                pred = logits.argmax(dim=1)
                total_correct += torch.eq(pred,label).float().sum()
                total_num += x.size(0)
            acc = total_correct / total_num
            print(epoch,acc)
if __name__ =='__main__':
    main()

 注意事项:
- 之所以在 测试时 添加 model.eval()是因为eval()时,BN会使用之前计算好的值,并且停止使用DropOut。保证用全部训练的均值和方差
二、CIFAR10 与 ResNet

 第一步:构建ResNet18的网络结构
 ResNet.py
import torch
from torch import  nn
from torch.nn import functional as F
class ResBlk(nn.Module):
    def __init__(self,ch_in,ch_out,stride=1):
        super(ResBlk,self).__init__()
        self.conv1 = nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=stride,padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out,ch_out,kernel_size=3,stride=1,padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)
        self.extra = nn.Sequential()
        if ch_out != ch_in:
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=stride),
                nn.BatchNorm2d(ch_out)
            )
    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        #[b, ch_in, h, w] = > [b, ch_out, h, w]
        out = self.extra(x) + out
        out = F.relu((out))
        return out
class ResNet18(nn.Module):
    def __init__(self):
        super(ResNet18, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3,64,kernel_size=3,stride=3,padding=0),
            nn.BatchNorm2d(64)
        )
        # followed 4 blocks
        # [b, 64, h, w] => [b, 128, h ,w]
        self.blk1 = ResBlk(64,128)
        # [b, 128, h, w] => [b, 256, h ,w]
        self.blk2 = ResBlk(128,256)
        # [b, 256, h, w] => [b, 512, h ,w]
        self.blk3 = ResBlk(256,512)
        # [b, 512, h, w] => [b, 1024, h ,w]
        self.blk4 = ResBlk(512,512)
        self.outlayer = nn.Linear(512*1*1,10)
    def forward(self,x):
        x = F.relu(self.conv1(x))
        x = self.blk1(x)
        x = self.blk2(x)
        x = self.blk3(x)
        x = self.blk4(x)
        print('after conv:', x.shape)
        # [b, 512, h, w] => [b, 512, 1, 1]
        x = F.adaptive_avg_pool2d(x, [1, 1])
        print('after pool:', x.shape)
        x = x.view(x.size(0), -1)
        x = self.outlayer(x)
        return x
def main():
    blk = ResBlk(64,128,stride=2)
    tmp = torch.randn(2,64,32,32)
    out = blk(tmp)
    print('block:',out.shape)
    x = torch.randn(2,3,32,32)
    model  = ResNet18()
    out = model(x)
    print('resnet:',out.shape)
if __name__ == '__main__':
    main()
第二步:代入第一个项目的main函数中即可
 main.py
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from resnet import ResNet18
from    torch import nn, optim
def main():
    batchsz = 128
    CIFAR_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=True)
    cifar_train = DataLoader(CIFAR_train, batch_size=batchsz, shuffle=True)
    CIFAR_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=True)
    cifar_test = DataLoader(CIFAR_test, batch_size=batchsz, shuffle=True)
    x,label = iter(cifar_train).next()
    print('x',x.shape,'label:',label.shape)
    device = torch.device('cuda')
    model = ResNet18().to(device)
    criteon = nn.CrossEntropyLoss().to(device)
    optimizer = optim.Adam(model.parameters(),lr=1e-3)
    print(model)
    for epoch in range(1000):
        for batchidx, (x,label) in enumerate(cifar_train):
            # [b, 3, 32, 32]
            # [b]
            x,label = x.to(device),label.to(device)
            logits = model(x)
            # logits: [b, 10]
            # label:  [b]
            loss = criteon(logits,label)
            # backprop
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print(epoch,'loss:',loss.item())
        model.eval()
        with torch.no_grad(): #之后代码不需backprop
            total_correct = 0
            total_num = 0
            for x ,label in cifar_test:
                # [b, 3, 32, 32]
                # [b]
                x,label = x.to(device),label.to(device)
                logits = model(x)
                pred = logits.argmax(dim=1)
                total_correct += torch.eq(pred,label).float().sum()
                total_num += x.size(0)
            acc = total_correct / total_num
            print(epoch,acc)
if __name__ =='__main__':
    main()
网络结构如下:
 
 迭代准确率和交叉熵计算如下:
 
 其他需要注意的地方:
- 并不是ResNet的paper中流程完全相同,但是十分类似
- 可以对数据进行数据增强和归一化等操作进一步提升效果



















