【C++】30h速成C++从入门到精通(多态)

news2025/8/6 19:01:14

多态的概念

多态:通俗来说就是多种心态,具体点就是去完成某个行为,当不同的对象去完成时会产生出不同的状态。

多态的定义及实现

多态的构成条件

多态是在不同继承关系的类对象,去调用同意函数,产生了不同的行为,比如student继承了person,person对象调动打印会打印PERSON,而student调动打印会打印STUDENT;

那么在继承中要构成多态的还两个条件:

  1. 必须通过基类的指针或者引用调用虚函数

  1. 被调用的函数必须是虚函数,且派生类必须对基类的函数进行重写

虚函数

虚函数:即被virtual修饰的成员函数称为虚函数。

class Person {
public:
 virtual void BuyTicket() { cout << "买票-全价" << endl;}
};

虚函数的重写

虚函数的重写(覆盖):派生类中有一个跟基类完全相同的虚函数(即派生类虚函数与基类虚函数的返回值、函数名、参数列表完全相同),称子类的虚函数重写了基类的虚函数。

class Person {
public:
 virtual void BuyTicket() { cout << "买票-全价" << endl; }
};
class Student : public Person {
public:
 virtual void BuyTicket() { cout << "买票-半价" << endl; }
 /*注意:在重写基类虚函数时,派生类的虚函数在不加virtual关键字时,虽然也可以构成重写(因为继
承后基类的虚函数被继承下来了在派生类依旧保持虚函数属性),但是该种写法不是很规范,不建议这样使用
*/
 /*void BuyTicket() { cout << "买票-半价" << endl; }*/
};
void Func(Person& p)
{ p.BuyTicket(); }
int main()
{
 Person ps;
 Student st;
 
 Func(ps);
 Func(st);
 return 0;
}

函数重写的两个例外:

  1. 协变(基类与派生类虚函数返回值类型不同)

派生类重写基类虚函数时,与积累虚函数返回值类型不同。即积累虚函数返回基类对象的指针或者引用,派生类虚函数返回派生类对象的指针或者引用时,成为协变。

class A{};
class B : public A {};
class Person {
public:
 virtual A* f() {return new A;}
};
class Student : public Person {
public:
 virtual B* f() {return new B;}
};
  1. 析构函数的重写(基类与派生类析构函数的名字不同)

如果基类的析构函数为虚函数,此时派生类析构函数只要定义,无论是否加virtual关键字,都与基类的析构函数构成重写,虽然基类与派生类析构函数名字不同。虽然函数名不相同,看起来违背了重写的规则,其实不然,这里可以理解为编译器对析构函数的名称做了特殊处理,编译后析构函数的名称统一处理成destructor。

class Person {
public:
 virtual ~Person() {cout << "~Person()" << endl;}
};
class Student : public Person {
public:
 virtual ~Student() { cout << "~Student()" << endl; }
};
// 只有派生类Student的析构函数重写了Person的析构函数,下面的delete对象调用析构函数,才能
构成多态,才能保证p1和p2指向的对象正确的调用析构函数。
int main()
{
 Person* p1 = new Person;
 Person* p2 = new Student;
 delete p1;
 delete p2;
 return 0;
}

C++11 override和final

从上面可以看出,C++对函数重写的要求比较严格,但是有些情况下由于疏忽,可能会导致函数名字母次序写反而无法构成重载,而这种错误在编译期间是不会报出的,只有在程序运行时没有得到预期结果才来debug会得不偿失,因此:C++提供了override和final两个关键字,可以帮助用户检测是否重写。

  1. final:修饰虚函数,表示该函数不能再被继承。

class Car
{
public:
 virtual void Drive() final {}
};
class Benz :public Car
{
public:
 virtual void Drive() {cout << "Benz-舒适" << endl;}//报错
};
  1. override:检查派生类虚函数是否重写了基类某个虚函数,如果没有重写编译报错。

class Car{
public:
 virtual void Drive(){}
};
class Benz :public Car {
public:
 virtual void Drive() override {cout << "Benz-舒适" << endl;}
};

重载、覆盖(重写)、隐藏(重定义)的对比

抽象类

概念

在虚函数后面写上=0,则这个函数为纯虚函数。包含纯虚函数的类叫做抽象类(也叫做缺口类),抽象类不能实例化出对象。派生类继承后也不能实例化出对象,只有重写虚函数,派生类才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现出了接口继承。

class Car
{
public:
 virtual void Drive() = 0;
};
class Benz :public Car
{
public:
 virtual void Drive()
 {
 cout << "Benz-舒适" << endl;
 }
};
class BMW :public Car
{
public:
 virtual void Drive()
 {
 cout << "BMW-操控" << endl;
 }
};
void Test()
{
 Car* pBenz = new Benz;
 pBenz->Drive();
 Car* pBMW = new BMW;
 pBMW->Drive();
}

接口和实现继承

普通函数的继承是一种实现继承,派生类继承了基类函数,可以使用函数,继承的是函数的实现。虚函数的继承是一种接口继承,派生类继承的是基类虚函数的接口,目的是为了重写,达成多态,继承的是接口。所以如果不实现多态,不要把函数定义成虚函数。

多态的原理

虚函数表

// 这里常考一道笔试题:sizeof(Base)是多少?
class Base
{
public:
 virtual void Func1()
 {
 cout << "Func1()" << endl;
 }
private:
 int _b = 1;
};
void main()
{
    Base n;
    cout << sizeof(n) << endl; 
}

通过观察测试我们发现b对象是8bytes,除了_b成员,还多一个__vfptr放在对象的前面(注意有些平台可能会放到对象的最后面,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针(v代表virtual,f代表function)。一个含有虚函数的类中都至少都有一个虚函数表指针,因为虚函数的地址要被放到虚函数表中,虚函数表也简称虚表,。那么派生类中这个表放了些什么呢?我们接着往下分析

// 针对上面的代码我们做出以下改造
// 1.我们增加一个派生类Derive去继承Base
// 2.Derive中重写Func1
// 3.Base再增加一个虚函数Func2和一个普通函数Func3
class Base
{
public:
 virtual void Func1()
 {
 cout << "Base::Func1()" << endl;
 }
 virtual void Func2()
 {
 cout << "Base::Func2()" << endl;
 }
 void Func3()
 {
 cout << "Base::Func3()" << endl;
 }
private:
 int _b = 1;
};
class Derive : public Base
{
public:
 virtual void Func1()
 {
 cout << "Derive::Func1()" << endl;
 }
private:
 int _d = 2;
};
int main()
{
 Base b;
 Derive d;
 return 0;
}

通过观察和测试我们发现了以下几点问题:

  1. 派生类对象d中也有一个虚表指针,d对象由两部分构成,一部分是父类继承下来的成员,虚表指针也就是存在部分的另一部分是自己的成员。

  1. 基类b对象和派生类d对象虚表是不一样的,这里我们发现Func1完成了重写,所以d的虚表中存的是重写的Derive::Func1,所以虚函数的重写也叫作覆盖,覆盖就是指虚表中虚函数的覆盖。重写是语法的叫法,覆盖是原理层的叫法。

  1. 另外Func2继承下来后是虚函数,所以放进了虚表,Func3也继承下来了,但是不是虚函数,所以不会放进虚表。

  1. 虚函数表本质是一个存虚函数指针的指针数组,这个数组最后面放了一个nullptr。

  1. 总结一下派生类的虚表生成:a.先将基类中的虚表内容拷贝一份到派生类虚表中 b.如果派生类重写了基类中某个虚函数,用派生类自己的虚函数覆盖虚表中基类的虚函数 c.派生类自己新增加的虚函数按其在 派生类中的声明次序增加到派生类虚表的最后。

  1. 这里还有一个童鞋们很容易混淆的问题:虚函数存在哪的?虚表存在哪的? 答:虚函数存在虚表,虚表存在对象中。注意上面的回答的错的。但是很多童鞋都是这样深以为然的。注意虚表存的是虚函数指针,不是虚函数,虚函数和普通函数一样的,都是存在代码段的,只是他的指针又存到了虚表中。另外对象中存的不是虚表,存的是虚表指针。那么虚表存在哪的呢?实际我们去验证一下会发现vs下是存在代码段的,Linux g++下大家自己去验证?

多态的原理

上面分析了这个半天了那么多态的原理到底是啥?还记得func函数穿person调用的person::print,传student调用的是stduent::print

class Person {
public:
 virtual void print() { cout << "PERSON" << endl; }
};
class Student : public Person {
public:
 virtual void print() { cout << "STUDENT" << endl; }
};
void Func(Person& p)
{
 p->print();
}
int main()
{
 Person He;
 Func(He);
 
 Student Wang;
 Func(Wang);
 return 0;
}

p是指向He对象的,p.print在He的虚表中找到的就是person::print

p是指向Wang对象的,p.print在Wang的虚表中找到的就是student::print

void Func(Person* p)
{
 p->BuyTicket();
}
int main()
{
 Person mike;
 Func(&mike);
 mike.BuyTicket();
 
 return 0;
}
// 以下汇编代码中跟你这个问题不相关的都被去掉了
void Func(Person* p)
{
...
 p->BuyTicket();
// p中存的是mike对象的指针,将p移动到eax中
001940DE mov eax,dword ptr [p]
// [eax]就是取eax值指向的内容,这里相当于把mike对象头4个字节(虚表指针)移动到了edx
001940E1 mov edx,dword ptr [eax]
// [edx]就是取edx值指向的内容,这里相当于把虚表中的头4字节存的虚函数指针移动到了eax
00B823EE mov eax,dword ptr [edx]
// call eax中存虚函数的指针。这里可以看出满足多态的调用,不是在编译时确定的,是运行起来以后到对
象的中取找的。
001940EA call eax 
00头1940EC cmp esi,esp 
}
int main()
{
... 
// 首先BuyTicket虽然是虚函数,但是mike是对象,不满足多态的条件,所以这里是普通函数的调用转换成
地址时,是在编译时已经从符号表确认了函数的地址,直接call 地址
 mike.BuyTicket();
00195182 lea ecx,[mike]
00195185 call Person::BuyTicket (01914F6h) 
... 
}

动态绑定与静态绑定

  1. 静态绑定又称为前期绑定(早绑定),在程序编译期间确定了程序的行为,也称为静态多态,比如:函数重载。

  1. 动态绑定又称后期绑定(晚绑定),是在程序运行期间,根据具体拿到的类型确定程序的具体行为,调用具体的函数,也称为动态多态。

  1. 本小节之前(5.2小节)买票的汇编代码很好的解释了什么是静态(编译器)绑定和动态(运行时)绑定。

单继承和多继承关系中的虚函数表

需要注意的是在单继承和多继承关系中,下面我们去关注的是派生类对象的虚表模型,因为基类的虚表模型前面我们已经看过了,没什么需要特别研究的

单继承关系中的虚函数表

class Base { 
public :
 virtual void func1() { cout<<"Base::func1" <<endl;}
 virtual void func2() {cout<<"Base::func2" <<endl;}
private :
 int a;
};
class Derive :public Base { 
public :
 virtual void func1() {cout<<"Derive::func1" <<endl;}
 virtual void func3() {cout<<"Derive::func3" <<endl;}
 virtual void func4() {cout<<"Derive::func4" <<endl;}
private :
 int b;
};
typedef void(*VFPTR) ();
void PrintVTable(VFPTR vTable[])
{
 // 依次取虚表中的虚函数指针打印并调用。调用就可以看出存的是哪个函数
 cout << " 虚表地址>" << vTable << endl;
 for (int i = 0; vTable[i] != nullptr; ++i)
 {
 printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);
 VFPTR f = vTable[i];
 f();
 }
 cout << endl;
}
int main()
{
 Base b;
 Derive d;
 // 思路:取出b、d对象的头4bytes,就是虚表的指针,前面我们说了虚函数表本质是一个存虚函数指
针的指针数组,这个数组最后面放了一个nullptr
 // 1.先取b的地址,强转成一个int*的指针
 // 2.再解引用取值,就取到了b对象头4bytes的值,这个值就是指向虚表的指针
 // 3.再强转成VFPTR*,因为虚表就是一个存VFPTR类型(虚函数指针类型)的数组。
 // 4.虚表指针传递给PrintVTable进行打印虚表
 // 5.需要说明的是这个打印虚表的代码经常会崩溃,因为编译器有时对虚表的处理不干净,虚表最后面
没有放nullptr,导致越界,这是编译器的问题。我们只需要点目录栏的-生成-清理解决方案,再编译就好
了。
 VFPTR* vTableb = (VFPTR*)(*(int*)&b);
 PrintVTable(vTableb);
 VFPTR* vTabled = (VFPTR*)(*(int*)&d);
 PrintVTable(vTabled);
 return 0;
}

多继承中的虚函数表

class Base1 {
public:
 virtual void func1() {cout << "Base1::func1" << endl;}
 virtual void func2() {cout << "Base1::func2" << endl;}
private:
 int b1;
};
class Base2 {
public:
 virtual void func1() {cout << "Base2::func1" << endl;}
 virtual void func2() {cout << "Base2::func2" << endl;}
private:
 int b2;
};
class Derive : public Base1, public Base2 {
public:
 virtual void func1() {cout << "Derive::func1" << endl;}
 virtual void func3() {cout << "Derive::func3" << endl;}
private:
 int d1;
};
typedef void(*VFPTR) ();
void PrintVTable(VFPTR vTable[])
{
 cout << " 虚表地址>" << vTable << endl;
 for (int i = 0; vTable[i] != nullptr; ++i)
 {
 printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);
 VFPTR f = vTable[i];
 f();
 }
 cout << endl;
}
int main()
{
 Derive d;
 VFPTR* vTableb1 = (VFPTR*)(*(int*)&d);
 PrintVTable(vTableb1);
 VFPTR* vTableb2 = (VFPTR*)(*(int*)((char*)&d+sizeof(Base1)));
 PrintVTable(vTableb2);
 return 0;
}

【菱形继承、菱形虚拟继承】

实际中我们不建议设计出菱形继承及菱形虚拟继承,一方面太复杂容易出问题,另一方面这样的模型,访问基类成员有一定得性能损耗。所以菱形继承、菱形虚拟继承我们的虚表我们就不看了,一般我们也不需要研究清楚,因为实际中很少用。如果好奇心比较强的宝宝,可以去看下面的两篇链接文章。

C++ 虚函数表解析 | 酷 壳 - CoolShell

C++ 对象的内存布局 | 酷 壳 - CoolShell

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/394067.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C/C++每日一练(20230307)

目录 1. 国名排序 ★★ 2. 重复的DNA序列 ★★★ 3. 买卖股票的最佳时机 III ★★★ &#x1f31f; 每日一练刷题专栏 C/C 每日一练 ​专栏 Python 每日一练 ​专栏 1. 国名排序 小李在准备明天的广交会&#xff0c;明天有来自世界各国的客房跟他们谈生意&#xff0c…

结合基于规则和机器学习的方法构建强大的混合系统

经过这些年的发展&#xff0c;我们都确信ML即使不能表现得更好&#xff0c;至少也可以在几乎所有地方与前ML时代的解决方案相匹配。比如说一些规则约束&#xff0c;我们都会想到能否把它们替换为基于树的ml模型。但是世界并不总是黑白分明的&#xff0c;虽然机器学习在解决问题…

spring boot actuator 动态修改日志级别

1 日志级别 Spring Boot Actuator包括在运行时查看和配置应用程序日志级别的功能。您可以查看整个列表&#xff0c;也可以查看单个记录器的配置&#xff0c;该配置由显式配置的日志级别和日志框架给出的有效日志级别组成。这些级别可以是: TRACEDEBUGINFOWARNERRORFATALOFFnu…

ruoyi-pro 代码生成api,swagger扫描不到

背景 重新创建一个新的maven工程&#xff0c;按照芋道源码ruoyi-pro官方文档生成代码后&#xff0c;新的maven工程目录下的接口不能被swagger扫描到&#xff0c;swagger-ui不显示新增的maven工程模块下的api。 解决方法 新增maven工程类中&#xff0c;新增swagger扫描配置类…

JavaWeb--用户登录注册案例

用户登录注册案例4.1 需求分析4.2 用户登录功能4.3 记住我-设置Cookie4.4 记住我-获取Cookie4.5 用户注册功能4.6 验证码-展示4.7验证码-校验4.8 测试目标 理解什么是会话跟踪技术掌握Cookie的使用掌握Session的使用完善用户登录注册案例的功能 4.1 需求分析 需求说明&#xf…

循环队列的实现

我们知道队列的实现可以用单链表和数组&#xff0c;但是循环链表也可以使用这两种方式。首先我们来看看单链表&#xff1a;首先使用单链表&#xff0c;我们需要考虑循环队列的一些特点。单链表实现循环队列我们要考虑几个核心问题&#xff1a;首先我们要区别 解决 空 和 满 的问…

一文吃透 SpringMVC 中的转发和重定向

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

CameraLink备忘录

首先来看看MDR26的引脚定义 从正面看进去&#xff0c;插头端&#xff0c;放置成倒梯形。 上排&#xff0c;从左到右&#xff0c;1到13&#xff0c; 下排&#xff0c;从左到右&#xff0c;14到26. 插座端&#xff0c;是镜像对称关系。 从正面看进去&#xff0c;插座端&#xf…

C#开发的OpenRA的游戏主界面怎么样创建4

继续游戏主界面创建的主题, 前面已经说到怎么样找到mainmenu.yaml来显示主界面,也说了怎么样找到各个子控件类。 现在就来仔细分析一下,主界面每一部分的功能。 比如下面这个区域的界面是怎么样创建: 要创建这一小部分的界面显示,也是需要做很多的工作。 因为在这里所有UI…

乐鑫特权隔离机制 #4 | 用户应用程序的安全启动

乐鑫特权隔离机制 系列文章 #4 目录 安全启动 (Secure boot) 受保护应用程序的安全启动 (Secure boot for protected app ) 用户应用程序的安全启动 (Secure boot for user app) 基于证书的验证方案 (Certificate-based verification scheme) 必要条件验证过程​​​​​…

数据模型(上):模型分类和模型组成

1.模型分类 ​ 数据模型是一种由符号、文本组成的集合,用以准确表达信息景观,达到有效交流、沟通的目的。数据建模者要求能与来自不同部门,具有不同技术背景,不同业务经验,不同技术水平的人员交流、沟通。数据建模者要了解每个人员的观点,并通过反馈证明理解无误,最终作…

【Java】Java环开发环境安装

Java环开发环境安装 简介&#xff1a; 如果要从事Java编程&#xff0c;则需要安装JDK&#xff0c;如果仅仅是运行一款Java程序则JRE就满足要求。 Java的安装包分为两类 一类是JRE其就是一个独立的Java运行环境&#xff1b; 一类是JDK其是Java的开发环境&#xff0c;不过在JDK…

软件设计师教程(九)计算机系统知识-软件工程基础知识

软件设计师教程 软件设计师教程&#xff08;一&#xff09;计算机系统知识-计算机系统基础知识 软件设计师教程&#xff08;二&#xff09;计算机系统知识-计算机体系结构 软件设计师教程&#xff08;三&#xff09;计算机系统知识-计算机体系结构 软件设计师教程&#xff08;…

HTTP概念协议报文结构请求响应数据报分析

文章目录前言一、HTTP的概念、特点、工作过程、应用场景二、HTTP协议报文格式查看方式三、HTTP协议数据报格式解读http请求数据报Part1:首行关于URL关于http方法Get请求Post方法【经典面试题】GET和POST区别其他方法关于HTTP协议版本号Part2:请求头&#xff08;header&#xff…

【数据库】MySQL表的增删改查(基础命令详解)

写在前面 : 语法中大写字母是关键字&#xff0c;用[]括这的是可以省略的内容。文中截图是相对应命令执行完得到的结果截图。1.CRUD 注释&#xff1a;在SQL中可以使用“--空格描述”来表示注释说明.CRUD:即增加(Create)、查询(Retrieve)、更新(Update)、删除(Delete)四个单词的首…

MOS FET继电器(无机械触点继电器)设计输入侧电源时的电流值概念

设计输入侧电源时的问题 机械式继电器、MOS FET继电器分别具有不同的特长。基于对MOS FET继电器所具小型及长寿命、静音动作等优势的需求&#xff0c;目前已经出现了所用机械式继电器向MOS FET继电器转化的趋势。 但是&#xff0c;由于机械式继电器与MOS FET继电器在产品结构…

CHAPTER 3 磁盘管理

磁盘管理1 磁盘管理1.1 块设备信息(lsblk)1.2 挂载硬盘1.2.1 挂载单个硬盘(mkfs、mount)1.2.2 磁盘分区工具(fdisk)1.2.3 创建分区1.2.4 相关命令1. df2. partprobe3. mkfs1.3 逻辑卷管理器(LVM)1. 涉及概念2. 使用LVM流程1.4 磁盘检测及修复&#xff08;fsck&#xff09;1 磁盘…

Vue 计算属性基础知识 监听属性watch

计算属性的概念 在{{}}模板中放入太多的逻辑会让模板内容过重且难以维护。例如以下代码&#xff1a; <div id"app">{{msg.split().reverse().join()}}</div><script>const vm new Vue({el: "#app",data: {msg:我想把vue学的细一点}})&…

SAP ABAP 采购订单屏幕增强

为采购订单增加一个页标签&#xff0c;在其中放入客户自定义字段&#xff0c; 1. CMOD 增强接口&#xff1a; MM06E005 EXIT_SAPMM06E_006 为子屏幕参数传入出口&#xff08;抬头&#xff09; EXIT_SAPMM06E_008 为子屏幕参数传出出口&#xff08;抬头&#xff09; EXIT_SA…

Vue基础19之插槽

Vue基础19插槽不使用插槽App.vueCategory.vue默认插槽&#xff1a;slotApp.vueCategory.vue具名插槽App.vueCategory.vue作用域插槽App.vueCategory.vue总结插槽 不使用插槽 App.vue <template><div class"bg"><Category :listData"food"…