CUDA 流的概念
- CUDA流在加速应用程序方面起到重要的作用,他表示一个GPU的操作队列操作在队列中按照一定的顺序执行,也可以向流中添加一定的操作如核函数的启动、内存的复制、事件的启动和结束等,添加的顺序也就是执行的顺序
- 一个流中的不同操作有着严格的顺序。但是不同流之间是没有任何限制的。多个流同时启动多个内核,就形成了网格级别的并行。
 CUDA流中排队的操作和主机都是异步的,所以排队的过程中并不耽误主机运行其他指令,所以这就隐藏了执行这些操作的开销。

详解
基于流的异步内核启动(Kernel Launch)和数据传输支持以下类型的粗粒度并发:
- 重叠主机和设备计算;
- 重叠主机计算和设备数据传输;
- 重叠主机设备数据传输和设备计算;
- 并发设备计算(多个设备)
当然也有不支持并发的情况:
- 主机上page-locked内存的分配;
- 设备内存的分配;
- 设备内存的设置 Memeset();
- 同一个设备上内存的复制;

下面是 cudaMemcpyAsync 进行的流演示:
 
vector 相加例子: A + B = C 的计算过程如下图所示,可以看到有多个流在并行执行,效率大大提升:
 
 下图可以看到 流 可以让进程并行度进一步提升
 
代码
#include <stdio.h>
#include <math.h>
#include "error.cuh"
#define N   (1024*1024)
#define FULL_DATA_SIZE   (N*20)
__global__ void kernel( int *a, int *b, int *c ) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    if (idx < N) {
        int idx1 = (idx + 1) % 256;
        int idx2 = (idx + 2) % 256;
        float   as = (a[idx] + a[idx1] + a[idx2]) / 3.0f;
        float   bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f;
        c[idx] = (as + bs) / 2;
    }
}
int main( void ) {
    cudaDeviceProp  prop;
    int whichDevice;
    CHECK( cudaGetDevice( &whichDevice ) );
    CHECK( cudaGetDeviceProperties( &prop, whichDevice ) );
    if (!prop.deviceOverlap) {
        printf( "Device will not handle overlaps, so no speed up from streams\n" );
        return 0;
    }
    cudaEvent_t     start, stop;
    float           elapsedTime;
    cudaStream_t    stream0, stream1;
    int *host_a, *host_b, *host_c;
    int *dev_a0, *dev_b0, *dev_c0;
    int *dev_a1, *dev_b1, *dev_c1;
    // start the timers
    CHECK( cudaEventCreate( &start ) );
    CHECK( cudaEventCreate( &stop ) );
    // initialize the streams
    CHECK( cudaStreamCreate( &stream0 ) );
    CHECK( cudaStreamCreate( &stream1 ) );
    // allocate the memory on the GPU
    CHECK( cudaMalloc( (void**)&dev_a0, N * sizeof(int) ) );
    CHECK( cudaMalloc( (void**)&dev_b0, N * sizeof(int) ) );
    CHECK( cudaMalloc( (void**)&dev_c0, N * sizeof(int) ) );
    CHECK( cudaMalloc( (void**)&dev_a1, N * sizeof(int) ) );
    CHECK( cudaMalloc( (void**)&dev_b1, N * sizeof(int) ) );
    CHECK( cudaMalloc( (void**)&dev_c1, N * sizeof(int) ) );
    // allocate host locked memory, used to stream
    CHECK( cudaHostAlloc( (void**)&host_a, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault ) );
    CHECK( cudaHostAlloc( (void**)&host_b, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault ) );
    CHECK( cudaHostAlloc( (void**)&host_c, FULL_DATA_SIZE * sizeof(int), cudaHostAllocDefault ) );
    for (int i=0; i<FULL_DATA_SIZE; i++) {
        host_a[i] = rand();
        host_b[i] = rand();
    }
    CHECK( cudaEventRecord( start, 0 ) );
    // now loop over full data, in bite-sized chunks
    for (int i=0; i<FULL_DATA_SIZE; i+= N*2) {
        // enqueue copies of a in stream0 and stream1
        CHECK( cudaMemcpyAsync( dev_a0, host_a+i, N * sizeof(int), cudaMemcpyHostToDevice, stream0 ) );
        CHECK( cudaMemcpyAsync( dev_a1, host_a+i+N, N * sizeof(int), cudaMemcpyHostToDevice, stream1 ) );
        // enqueue copies of b in stream0 and stream1
        CHECK( cudaMemcpyAsync( dev_b0, host_b+i, N * sizeof(int), cudaMemcpyHostToDevice, stream0 ) );
        CHECK( cudaMemcpyAsync( dev_b1, host_b+i+N, N * sizeof(int), cudaMemcpyHostToDevice, stream1 ) );
        kernel<<<N/256,256,0,stream0>>>( dev_a0, dev_b0, dev_c0 );
        kernel<<<N/256,256,0,stream1>>>( dev_a1, dev_b1, dev_c1 );
        CHECK( cudaMemcpyAsync( host_c+i, dev_c0, N * sizeof(int), cudaMemcpyDeviceToHost, stream0 ) );
        CHECK( cudaMemcpyAsync( host_c+i+N, dev_c1, N * sizeof(int), cudaMemcpyDeviceToHost, stream1 ) );
    }
    CHECK( cudaStreamSynchronize( stream0 ) );
    CHECK( cudaStreamSynchronize( stream1 ) );
    CHECK( cudaEventRecord( stop, 0 ) );
    CHECK( cudaEventSynchronize( stop ) );
    CHECK( cudaEventElapsedTime( &elapsedTime,
                                        start, stop ) );
    printf( "Time taken:  %3.1f ms\n", elapsedTime );
    // cleanup the streams and memory
    CHECK( cudaFreeHost( host_a ) );
    CHECK( cudaFreeHost( host_b ) );
    CHECK( cudaFreeHost( host_c ) );
    CHECK( cudaFree( dev_a0 ) );
    CHECK( cudaFree( dev_b0 ) );
    CHECK( cudaFree( dev_c0 ) );
    CHECK( cudaFree( dev_a1 ) );
    CHECK( cudaFree( dev_b1 ) );
    CHECK( cudaFree( dev_c1 ) );
    CHECK( cudaStreamDestroy( stream0 ) );
    CHECK( cudaStreamDestroy( stream1 ) );
    return 0;
}



















