dify打造数据可视化图表

news2025/6/12 16:35:33

一、概述

在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。

一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队开源的 mcp-server-chart

github地址:https://github.com/antvis/mcp-server-chart

目前已经支持超过 15 种我们常用的可视化图表类型,比如:

  • 折线图、柱状图、饼图、面积图、条形图
  • 直方图、散点图、矩阵树图、词云图、双轴图
  • 雷达图、思维导图、网络图、流程图、鱼骨图

可以说,它几乎能满足我们日常工作中绝大多数场景的可视化需求。 最棒的是,它会以图片链接的形式返回生成结果,方便你嵌入到任何需要的地方。

二、MCP工具初体验

docker运行

mcp-server-chart官方已经封装好了镜像,docker hub地址:https://hub.docker.com/r/acuvity/mcp-server-chart

目前最新版本是0.4.0,运行一下

docker run -d --name mcp-server-chart -it -p 8000:8000  acuvity/mcp-server-chart:0.4.0

mcp-server-chart支持3种调用方式,分别是STDIO,SSE,streamable Http

Cherry Studio调用

这里以Cherry Studio客户端,来演示一下如何使用

添加MCP服务器

名称:mcp-server-chart

类型:streamable Http

地址:http://10.44.32.14:8000/mcp

 添加完成后,查看工具列表

 能看到几十个工具方法,就说明运行正常。

新建一个默认会话,选择mcp服务器

 输入提示词:

根据诗人的名气以诗人的名字生成一个词云图,至少50位中国古代诗人,给出图片链接后再用Markdown语法直接展示。

效果如下:

 整个过程,大模型就像一位经验丰富的设计师,不仅理解了你的需求,还自动帮你准备好了绘制图表所需的各种参数(比如图片的宽度、高度、标题等),最后给出了图片链接。

注意,这个链接,公网是可以打开的

https://mdn.alipayobjects.com/one_clip/afts/img/EKJYTr0ONCAAAAAAVvAAAAgAoEACAQFr/original

三、Dify+可视化图表MCP

目前有很多文章,一般都是通过Dify 结合数据库和 ECharts插件,实现数据可视化的。

但是实现过程比较复杂,首先通过数据库查询原始数据,其次通过python代码转换成 ECharts能够理解的图表格式,最后调用ECharts插件实现图表展示。

整个过程需要不少经验和技巧,一不小心就容易出错。

但是!有了 mcp-server-chart 这个 MCP 工具,事情就变得简单多了。

场景演示:用户用自然语言提问,我们通过 Dify 工作流从数据库里查询数据,并生成图表。

示例数据

为了方便演示,我用MySQL 数据库搭建了一些示例数据

新建表boxoffice

CREATE TABLE `boxoffice` (
  `id` bigint NOT NULL,
  `years` varchar(64) COLLATE utf8mb4_unicode_ci DEFAULT NULL,
  `movie_name` varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,
  `score` float DEFAULT NULL,
  `director` varchar(64) COLLATE utf8mb4_unicode_ci DEFAULT NULL,
  `box_office` float DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

插入数据

INSERT INTO boxoffice (id, years, movie_name, score, director, box_office) VALUES
(1, '2025', '哪吒之魔童闹海', 8.5, '饺子', 1467030),
(2, '2021', '长津湖', 7.6, '陈凯歌', 577524),
(3, '2017', '战狼2', 7.1, '吴京', 569456),
(4, '2021', '你好,李焕英', 8.1, '贾玲', 541372),
(5, '2019', '哪吒之魔童降世', 8.5, '饺子', 503557),
(6, '2019', '流浪地球', 7.9, '郭帆', 468814),
(7, '2023', '满江红', 7.8, '张艺谋', 454437),
(8, '2021', '唐人街探案3', 5.6, '陈思诚', 452392),
(9, '2019', '复仇者联盟4:终局之战', 8.5, '安东尼·罗素', 424889),
(10, '2022', '长津湖之水门桥', 7.2, '徐克', 406724),
(11, '2023', '流浪地球2', 8.2, '郭帆', 402869),
(12, '2023', '孤注一掷', 6.9, '申奥', 384848),
(13, '2018', '红海行动', 8.5, '林超贤', 365185),
(14, '2023', '消失的她', 6.8, '崔睿', 352396),
(15, '2025', '唐探1900', 6.6, '陈思诚', 348642),
(16, '2024', '热辣滚烫', 7.9, '贾玲', 346040),
(17, '2024', '飞驰人生2', 7.7, '韩寒', 339842),
(18, '2018', '唐人街探案2', 7.1, '陈思诚', 339769),
(19, '2016', '美人鱼', 6.8, '周星驰', 339211),
(20, '2024', '抓娃娃', 7.3, '闫非', 332751);

打开表,效果如下:

开始节点

新建一个空白应用

开始节点默认配置,接收用户问题。

需求提炼

分析用户问题,判断用户是否需要生成图表,提取出SQL查询的需求。

输出如下:

sql_requirement: [精炼后的数据查询需求]
need_chart: [是/否]
chart_type: [推荐的Echarts图表类型或“无”]

大模型选择DeepSeek-V3

注意:大模型必须选择DeepSeek-V3,选择其他模型可能会导致最后图表无法生成。

 提示词如下:

你是一名专业的数据需求提炼师。

请仔细阅读用户的自然语言问题{{#context#}},只保留与数据查询直接相关的核心需求。自动忽略与数据查询无关的内容(如生成图表、导出Excel、制作报表等)。

请判断用户是否需要用图表展示结果。如果需要,请根据问题内容推荐最合适的Echarts图表类型(如area、bar、column、dual-axes、fishbone-diagram、flow-diagram、histogram、line、mind-map、network-graph、pie、radar、scatter、treemap、word-cloud等);如果不需要图表,请填写“无”。

请严格按照如下格式输出,不要有任何解释或多余内容:
sql_requirement: [精炼后的数据查询需求]
need_chart: [是/否]
chart_type: [推荐的Echarts图表类型或“无”]

参数提取器

把上一个节点的三个输出参数提取出来。

添加提取参数

 第一个参数,内容如下

sql_requirement
sql需求

其他参数依次类推

need_chart
是否需要图表
chart_type
图表类型

最后效果如下:

自然语言转SQL(ROOKIE_TEXT2DATA)

打开插件市场,搜索关键字ROOKIE_TEXT2DATA,安装插件

添加节点,注意选择rookie text2data

这个节点的核心功能就是把用户的自然语言转成SQL语句了。

输入为提取后的SQL语句需求,关联参数提取节点的sql_requirement。

数据库配置: 正确填写数据库类型、IP、端口、库名、用户名、密码。

大模型:我这里必须用DeepSeek-V3

注意:这里的查询语句,选择变量sql_requirement。输入/就有下拉框

 提示词如下:

表名:boxoffice
字段说明:
- id:id,int
- years:年份,int
- movie_name:电影名,string
- score:评分,float
- director:导演,string
- box_office:票房,int

注意事项:
- 如有分组统计,请使用SUM、AVG等聚合函数,不要直接用原始字段。
- 所有非聚合字段必须出现在GROUP BY中。
- 只输出SQL语句,不要解释。

示例查询:
1. 查询每个导演的总票房:SELECT director, SUM(box_office) FROM boxoffice GROUP BY director;
2. 查询每年票房最高的电影:SELECT years, movie_name, MAX(box_office) FROM boxoffice GROUP BY years;

数据库配置连接信息

注意返回格式,选择text

执行SQL

此节点负责连接数据库,并执行上一步生成的SQL语句。

输入变量:上一节点返回的SQL语句。

数据库配置: 正确填写数据库类型、IP、端口、库名、用户名、密码。

输出变量:返回数据格式为文本。

 注意返回格式,选择text

注意,这里的执行sql语句,选择变量 ROOKIE TEXT2DATA.text

条件分支

判断是否需要图表,给到不同的分支。

图文总结

如果需要生成图表,走这个节点。

Agent策略选择ReAct(Support MCP Tools)

MCP服务器配置如下,url换成你自己的

{
  "mcp-server-chart": {
    "url": "http://10.44.32.14:8000/sse"
  }
}

注意:这里必须是SSE模式,不能用streamable_http

为什么?因为插件Agent策略,不支持以streamable_http协议生成图表,但是SSE协议是支持的。

但是上面你明明用Cherry Studio客户端,可以生成图表了呀。

我们首先要理清一点,mcp-server-chart本身是支持以streamable_http协议生成图表

Cherry Studio是客户端,它更新快。那么插件Agent策略,它也是客户端,更新很慢。现在问题是插件目前不支持,怎么办?等插件更新就好了。

指令

注意选择ROOKIE EXCUTE SOL.text

查询

提示词如下:

根据给定的数据选择合适的工具生成相应的图表,图表类型参考 {{#1749119517859.chart_type#}}。如果有小数的话保留小数点后面2位就行。输出先用自然语言简要给出数据分析,给出图片链接地址,并展示图片,要求全部用中文回答。

注意:这里的提示词复制之后,需要手动替换一下里面的变量。 因为每一个人的变量id是不一样的。 我这里是1749119517859,你那里就不一样了。

手动替换好之后,效果如下:

文字总结

如果用户只是想查询数据,不需要图表,那么工作流就会走到这个相对简单的节点。它会根据数据库查询结果,用简洁的自然语言给出分析和意见。

 模型,必须是DeepSeek-V3

上下文,选择变量rookie excute_sql.text

提示词如下:

请根据用户问题和查询结果,用简洁的中文自然语言回答并给出分析意见。
用户问题:{{#1749119517859.sql_requirement#}}
查询结果:{{#context#}}

注意:这里的提示词复制之后,需要手动替换一下里面的变量。 因为每一个人的变量id是不一样的。 我这里是1749119517859,你那里就不一样了。

替换好之后,就是上面的效果了。

回复节点

直接引用图文总结或文字总结的输出就好了。

四、测试

比如问一下各导演的票房占比,可以看到给出了分析结果和图片链接地址。

各导演的票房占比是多少?

图片链接可以直接打开:https://mdn.alipayobjects.com/one_clip/afts/img/qUhrTLIUAWEAAAAASRAAAAgAoEACAQFr/original

在测试一下折线图。

请用图表展示历年票房变化

打开图表链接:https://mdn.alipayobjects.com/one_clip/afts/img/LX_NRqh9-FIAAAAARrAAAAgAoEACAQFr/original

 

五、AntV插件的使用

除了MCP工具,在插件市场搜索antv可以看到蚂蚁集团提供的这个可视化工具插件。

 和mcp server一样,也是支持了15种工具。

创建一个Agent

添加这些工具

 提示词如下:

根据用户提供的数据选择相应的工具生成可视化图表。
展示图片的时候先给出图片的链接地址,后直接展示图片。
回复全部使用中文回答。

最终效果如下:

注意确保有生成词云图

默认只能添加10个工具,如果需要添加更多数量,需要修改dify环境变量

MAX_TOOLS_NUM=20

重启dify所有组件,就可以添加20个工具了。

直接加满

我们就可以随便用自然语言让大模型给出相应的图表了。

我让它生成了一个《三体》小说的人物词云图。

生成一个三体小说主要人物的词云图。至少列举出30个主要人物来。

插件不支持插入图片,手动打开图片:https://mdn.alipayobjects.com/one_clip/afts/img/3-8JSqF4yhUAAAAASXAAAAgAoEACAQFr/original

当然了,你也可以在工作流中调用这些工具。

和其他的生成图表的插件类似,给出对应的数据。

不过,这个插件可以更方便的调整图表的大小。自定义图表的宽和高。

点击设置

 可以设置宽高

这些“底层轮子”的不断涌现,无疑是一件大好事。

它们让我们能够从繁琐的、重复性的底层技术实现中解放出来,更专注于业务逻辑本身,更聚焦于如何创造真正的价值。

本文参考链接:https://zhuanlan.zhihu.com/p/1911538446977176761

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2407433.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…

企业如何增强终端安全?

在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率&#xff0c…

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线, n r n_r nr​ 根接收天线的 MIMO 系…

Linux --进程控制

本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…