Git的三种合并方式

news2025/7/23 19:08:49

在 Gitee(码云)中合并分支主要有三种方式:​普通合并(Merge Commit)、压缩合并(Squash Merge)​变基合并(Rebase Merge)​。每种方式适用于不同的场景,各有优缺点。以下是详细对比:


1. 普通合并(Merge Commit)​

特点
  • 保留完整历史​:生成一个新的合并提交(Merge Commit),包含两个分支的所有提交记录。
  • 非破坏性操作​:不会修改原有提交历史。
  • 分支关系清晰​:在提交历史中会显示分叉和合并的路径。
适用场景
  • 需要保留完整开发过程(如多人协作时的分支合并)。
  • 合并长期存在的功能分支到主分支(如 devmaster)。
操作步骤
  1. 在 Gitee 的 Pull Request 页面,选择 ​​“普通合并”​
  2. 确认后会自动生成一个类似 Merge branch 'feature' into 'master' 的提交。
优缺点
优点缺点
历史完整可追溯提交历史可能冗长
操作简单安全频繁合并会导致提交树复杂,呈现出非线性的结构尤其是在同时合并多个分支的情况下

2. 压缩合并(Squash Merge)​

特点
  • 压缩提交记录​:将分支上的所有提交合并为一个全新提交,丢弃原分支的独立提交历史。
  • 简化历史​:主分支(如 master)的提交记录保持线性、干净。
适用场景
  • 合并短期功能分支(如修复 Bug 的小分支)。
  • 分支提交较多但无需保留中间过程(如临时实验性代码)。
操作步骤
  1. 在 Pull Request 页面选择 ​​“压缩合并”​
  2. 系统会将分支的所有更改压缩成一个提交,并合并到目标分支。
优缺点​:
优点缺点
主分支历史简洁丢失原分支的详细提交记录
避免无关中间提交不利于后期追踪单次修改的上下文

3. 变基合并(Rebase Merge)​

特点
  • 线性历史​:将分支的提交“重新播放”到目标分支的最新提交之后,​不生成合并提交
  • 修改提交历史​:原分支的提交哈希会改变(属于破坏性操作)。
适用场景
  • 需要保持提交历史完全线性(如开源项目的主分支)。
  • 本地分支同步主分支更新时常用(需在本地执行 git rebase)。
注意事项
  • Gitee 的 Web 端不支持直接变基合并,需通过命令行操作:
    git checkout feature
    git rebase master
    git checkout master
    git merge feature  # 快进合并(Fast-forward)
优缺点
优点缺点
提交历史线性清晰操作复杂,容易出错
无多余合并提交重写历史可能影响协作

三种方式对比总结

合并方式提交历史是否生成合并提交适用场景
普通合并保留分叉和合并记录长期分支合并,需完整历史
压缩合并压缩为单一提交是(但只有一个)简化历史,合并短期分支
变基合并线性历史(无分叉)追求简洁历史,需本地操作

如何选择?​

  1. 团队协作​ → 优先用 ​普通合并​(保留上下文)。
  2. 临时分支​ → 选择 ​压缩合并​(避免无关提交)。
  3. 个人项目/开源项目​ → 本地 ​变基合并​(保持历史整洁)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2397861.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从零到一:我的技术博客导航(持续更新)

作者:冰茶 最后更新:2025年6月3日 本文收录了我的C#编程学习心得与技术探索,将持续更新 前言 作为一名.NET开发者,C#语言的学习与探索一直是我技术成长的核心路径。本文集整理了我在C#学习过程中的思考与实践,希望能够…

SpringBoot整合Flowable【08】- 前后端如何交互

引子 在第02篇中,我通过 Flowable-UI 绘制了一个简单的绩效流程,并在后续章节中基于这个流程演示了 Flowable 的各种API调用。然而,在实际业务场景中,如果要求前端将用户绘制的流程文件发送给后端再进行解析处理,这种…

【五模型时间序列预测对比】Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN

【五模型时间序列预测对比】Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN 目录 【五模型时间序列预测对比】Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Transformer-LSTM、Transformer、CNN-LSTM、LSTM、…

深入了解MCP基础与架构

一、引言 在人工智能技术以指数级速度渗透各行业领域的今天,我们正站在一个关键的技术拐点。当ChatGPT月活突破亿级、Gemini Pro实现多模态实时交互、Claude 3.5 Sonnet突破百万上下文长度,这些里程碑事件背后,一个崭新的大门逐步打开&#…

实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.13 R语言解题

本文是实验设计与分析&#xff08;第6版&#xff0c;Montgomery著&#xff0c;傅珏生译) 第5章析因设计引导5.7节思考题5.13 R语言解题。主要涉及方差分析&#xff0c;正态假设检验&#xff0c;残差分析&#xff0c;交互作用图。 dataframe<-data.frame( yc(36,18,30,39,20…

【java面试】MySQL篇

MySQL篇 一、总体结构二、优化&#xff08;一&#xff09;定位慢查询1.1 开源工具1.2Mysql自带的慢日志查询1.3 总结 &#xff08;二&#xff09;定位后优化2.1 优化2.2 总结 &#xff08;三&#xff09;索引3.1 索引3.2 索引底层数据结构——B树3.3 总结 &#xff08;四&#…

贪心算法应用:欧拉路径(Fleury算法)详解

Java中的贪心算法应用&#xff1a;欧拉路径&#xff08;Fleury算法&#xff09;详解 一、欧拉路径与欧拉回路基础 1.1 基本概念 欧拉路径&#xff08;Eulerian Path&#xff09;是指在一个图中&#xff0c;经过图中每一条边且每一条边只经过一次的路径。如果这条路径的起点和…

【算法设计与分析】实验——二维0-1背包问题(算法分析题:算法思路),独立任务最优调度问题(算法实现题:实验过程,描述,小结)

说明&#xff1a;博主是大学生&#xff0c;有一门课是算法设计与分析&#xff0c;这是博主记录课程实验报告的内容&#xff0c;题目是老师给的&#xff0c;其他内容和代码均为原创&#xff0c;可以参考学习&#xff0c;转载和搬运需评论吱声并注明出处哦。 要求&#xff1a;3-…

【Git】View Submitted Updates——diff、show、log

在 Git 中查看更新的内容&#xff08;即工作区、暂存区或提交之间的差异&#xff09;是日常开发中的常见操作。以下是常用的命令和场景说明&#xff1a; 文章目录 1、查看工作区与暂存区的差异2、查看提交历史中的差异3、查看工作区与最新提交的差异4、查看两个提交之间的差异5…

deepseek原理和项目实战笔记2 -- deepseek核心架构

混合专家&#xff08;MoE&#xff09; ​​混合专家&#xff08;Mixture of Experts, MoE&#xff09;​​ 是一种机器学习模型架构&#xff0c;其核心思想是通过组合多个“专家”子模型&#xff08;通常为小型神经网络&#xff09;来处理不同输入&#xff0c;从而提高模型的容…

在 MATLAB 2015a 中如何调用 Python

在 MATLAB 2015a 中调用 Python 可通过系统命令调用、.NET 交互层包装、MEX 接口间接桥接、环境变量配置四种方式&#xff0c;但因该版本对 Python 支持有限&#xff0c;主要依赖的是系统命令调用与间接脚本交互。其中&#xff0c;通过 system() 函数调用 Python 脚本是最简单且…

房屋租赁系统 Java+Vue.js+SpringBoot,包括房屋类型、房屋信息、预约看房、合同信息、房屋报修、房屋评价、房主管理模块

房屋租赁系统 JavaVue.jsSpringBoot&#xff0c;包括房屋类型、房屋信息、预约看房、合同信息、房屋报修、房屋评价、房主管理模块 百度云盘链接&#xff1a;https://pan.baidu.com/s/1KmwOFzN9qogyaLQei3b6qw 密码&#xff1a;l2yn 摘 要 社会的发展和科学技术的进步&#xf…

华为OD机试真题——生成哈夫曼树(2025B卷:100分)Java/python/JavaScript/C/C++/GO六种最佳实现

2025 B卷 100分 题型 本文涵盖详细的问题分析、解题思路、代码实现、代码详解、测试用例以及综合分析; 并提供Java、python、JavaScript、C++、C语言、GO六种语言的最佳实现方式! 本文收录于专栏:《2025华为OD真题目录+全流程解析/备考攻略/经验分享》 华为OD机试真题《生成…

Redis最佳实践——性能优化技巧之监控与告警详解

Redis 在电商应用的性能优化技巧之监控与告警全面详解 一、监控体系构建 1. 核心监控指标矩阵 指标类别关键指标计算方式/说明健康阈值&#xff08;参考值&#xff09;内存相关used_memoryINFO Memory 获取不超过 maxmemory 的 80%mem_fragmentation_ratio内存碎片率 used_m…

R3GAN训练自己的数据集

简介 简介&#xff1a;这篇论文挑战了"GANs难以训练"的广泛观点&#xff0c;通过提出一个更稳定的损失函数和现代化的网络架构&#xff0c;构建了一个简洁而高效的GAN基线模型R3GAN。作者证明了通过合适的理论基础和架构设计&#xff0c;GANs可以稳定训练并达到优异…

【容器docker】启动容器kibana报错:“message“:“Error: Cannot find module ‘./logs‘

说明&#xff1a; 1、服务器数据盘挂了&#xff0c;然后将以前的数据用rsync拷贝过去&#xff0c;启动容器kibana服务&#xff0c;报错信息如下图所示&#xff1a; 2、可能是拷贝docker文件夹&#xff0c;有些文件没有拷贝过去&#xff0c;导致无论是给文件夹授权用户kibana或者…

C#里与嵌入式系统W5500网络通讯(4)

怎么样修改W5500里的socket收发缓冲区呢? 需要进行下面的工作,首先要了解socket缓冲区的作用,接着了解缓冲区的硬件资源, 最后就是要了解自己的需求,比如自己需要哪个socket的收发送缓冲区多大。 硬件的寄存器为: 这是 W5500 数据手册中关于 Sn_RXBUF_SIZE(Socket n …

Spring boot集成milvus(spring ai)

服务器部署Milvus Run Milvus with Docker Compose (Linux) milvus版本可在docker-compose.yml中进行image修改 启动后&#xff0c;docker查看启动成功 spring boot集成milvus 参考了这篇文章 Spring AI开发RAG示例&#xff0c;理解RAG执行原理 但集成过程中遇到了一系列…

Visual Studio+SQL Server数据挖掘

这里写自定义目录标题 工具准备安装Visual studio 2017安装SQL Server安装SQL Server Management Studio安装analysis service SSMS连接sql serverVisual studio新建项目数据源数据源视图挖掘结构部署模型设置挖掘预测 部署易错点 工具准备 Visual studio 2017 analysis servi…

通过阿里云服务发送邮件

通过阿里云服务发送邮件 1. 整体描述2. 方案选择2.1 控制台发送2.2 API接口接入2.3 SMTP接口接入2.4 结论 3. 前期工作3.1 准备工作3.2 配置工作3.3 总结 4. 收费模式4.1 免费额度4.2 资源包4.3 按量付费 5. Demo开发5.1 选择SMTP服务器5.2 pom引用5.3 demo代码5.4 运行结果 6 …