Python实现P-PSO优化算法优化卷积神经网络CNN回归模型项目实战

news2025/6/4 17:08:27

说明:这是一个机器学习实战项目(附带数据+代码+文档),如需数据+代码+文档可以直接到文章最后关注获取。

1.项目背景

随着人工智能和深度学习技术的快速发展,卷积神经网络(CNN)在图像分类、目标检测等领域取得了显著成果。然而,在回归任务中,如时间序列预测、图像像素值估计等场景下,CNN 的性能往往受限于超参数的选择,例如学习率、卷积核大小、层数等。不合理的超参数设置可能导致模型过拟合或欠拟合,从而影响预测精度。传统的手动调参方法耗时且依赖经验,难以应对复杂问题。因此,如何高效地优化 CNN 的超参数成为了一个亟待解决的问题。

为了解决上述问题,智能优化算法逐渐被引入到深度学习领域。粒子群优化算法(PSO)因其简单高效、全局搜索能力强而备受关注。然而,标准 PSO 在处理高维、非线性问题时可能存在收敛速度慢、易陷入局部最优等问题。为此,并行粒子群优化算法(P-PSO)应运而生,通过多子种群协同搜索和信息共享机制,显著提升了优化效率和鲁棒性。将 P-PSO 应用于 CNN 超参数优化,可以有效提高模型的泛化能力和预测精度,同时降低人工干预成本。

本项目旨在结合 P-PSO 和 CNN 构建一个高效的回归模型,利用 P-PSO 自动优化 CNN 的关键超参数,从而提升模型在复杂数据集上的表现。这一研究不仅为深度学习模型的自动化优化提供了新思路,还具有广泛的实际应用价值。例如,在金融领域,可用于股票价格预测;在医疗领域,可用于医学影像分析和疾病风险评估;在工业领域,可用于设备状态监测和故障预测。通过本项目的实施,我们期望为相关领域的智能化发展提供有力的技术支持。

本项目通过Python实现P-PSO优化算法优化卷积神经网络CNN回归模型项目实战。               

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码: 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:  

4.探索性数据分析

4.1 y变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。  

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下: 

5.3 数据样本增维

为满足建模的需要,对特征样本进行增加一个维度,增维的关键代码如下:

6.构建P-PSO优化算法优化CNN神经网络回归模型   

主要使用通过P-PSO优化算法优化CNN神经网络回归模型,用于目标回归。          

6.1 寻找最优参数值  

最优参数值: 

6.2 最优参数构建模型 

编号

模型名称

参数

1

CNN神经网络回归模型    

units=best_units

2

optimizer = tf.keras.optimizers.Adam(best_learning_rate)

3

epochs=best_epochs

6.3 模型摘要信息

6.4 模型训练集测试集损失曲线图

7.模型评估

7.1评估指标及结果  

评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。 

模型名称

指标名称

指标值

测试集

CNN神经网络回归模型    

R方

0.9994

均方误差

10.7141

解释方差分

0.9994

绝对误差

2.4069 

从上表可以看出,R方分值为0.9994,说明模型效果较好。    

关键代码如下:     

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型效果良好。       

8.结论与展望

综上所述,本文采用了Python实现P-PSO优化算法优化CNN神经网络回归算法来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2396393.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ssm 学习笔记day03

环境搭建 spring配置数据库 1.在pom.xml安装相应的依赖 2.在properties里面配置数据库的相关信息,需要强调的一点是,一定不要在properties里面添加任何空格,否则就会像我一样搞了两小时,数据一直报错,然后发现是空格的…

mkdir: cannot create directory ‘gitlab-stu’: No space left on device

Linux中创建目录时报错“mkdir: cannot create directory ‘gitlab-stu’: No space left on device”,磁盘空间不足。 使用df命令查看,发现 / 下面use%占满了: 查看inode使用情况: 可以看到docker的数据大部分存放在/var/lib/do…

ESP8285乐鑫SOCwifi芯片32bit MCU和2.4 GHz Wi-Fi

简介 ESP8285 拥有完整的且⾃成体系的 Wi-Fi ⽹络功能,既能够独⽴应⽤,也可以作为从机搭载于其他主机 MCU 运⾏。当 ESP8285 独⽴应⽤时,能够直接从外接 flash 中启动。内置的⾼速缓冲存储器有利于提⾼系统性能,并且优化存储系统。…

DL00916-基于深度学习的金枪鱼各类别目标检测含完整数据集

文末有获取方式 🚀 基于深度学习的金枪鱼目标检测——开创智能识别新领域! 在计算机视觉和深度学习的快速发展中,目标检测 技术已成为提升行业效率的核心利器。而对于海洋生物领域,尤其是金枪鱼的 目标检测,更是填补了…

不可变集合类型转换异常

记录一个异常:class java.util.ImmutableCollections$ListN cannot be cast to class java.util.ArrayList (java.util.ImmutableCollections$ListN and java.util.ArrayList 文章目录 1、原因2、解决方式一3、解决方式二4、关于不可变集合的补充4.1 JDK8和9的对比4…

【PyQt5】从零开始的PyQt5 - QLabel篇

从零开始的PyQt5 - QLabel篇 引言一、简述二、例程2.1 显示到QWidget窗口上2.2 重新设置Label大小和对齐方式2.3 添加内容,设置边框2.4 显示富文本 三、参考 引言 QLabel主要用于显示文本或图像,不提供用户交互功能。本文主要简述PyQt5中的QLabel以及展…

多模态AI的企业应用场景:视觉+语言模型的商业价值挖掘

关键词:多模态AI | 视觉语言模型 | 企业应用 | 商业价值 | 人工智能 📚 文章目录 一、引言:多模态AI时代的到来二、多模态AI技术架构深度解析三、客服场景:智能化服务体验革命四、营销场景:精准投放与创意生成五、研…

数据结构(7)树-二叉树-堆

一、树 1.树的概述 现实生活中可以说处处有树。 在计算机里,有一种数据结构就是像现实中的树一样,有根,有分支,有叶子;一大片树就叫做森林。 这些性质抽象到计算机里也叫树,大致长这个样子: …

怎么快速判断一款MCU能否跑RTOS系统

最近有朋友在后台中私信我,说现在做项目的时候有时候总是会考虑要不要用RTOS,或者怎么考量什么时候该用RTOS比较好、 关于这个问题,我个人也是深有感触的,做开发这么久了,大大小小的产品都做过不少了。有用RTOS开发的…

使用原生前端技术封装一个组件

封装导航栏 navbar-template.html <header><nav><ul><li><a href"index.html"><i class"fas fa-home"></i> 主页</a></li><li><a href"#"><i class"fas fa-theate…

lesson04-简单回归案例实战(理论+代码)

理解线性回归及梯度下降优化 引言 在机器学习的基础课程中&#xff0c;我们经常遇到的一个重要概念就是线性回归。今天&#xff0c;我们将深入探讨这一主题&#xff0c;并通过具体的例子来了解如何利用梯度下降方法对模型进行优化。 线性回归简介 线性回归是一种统计方法&a…

Java 面试中的数据库设计深度解析

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Java 面试中的数据库设计深度解析一、数据库…

国内首发!具有GPU算力的AI扫描仪

奥普思凯重磅推出的具有GPU算力的扫描仪&#xff0c;是一款真正意义上的AI扫描仪&#xff0c;奥普思凯将嵌有OCR发票识别核心的高性能NPU算力棒与高速扫描仪相结合&#xff0c;实现软件硬件相结合&#xff0c;采用一体化外观设计&#xff0c;实现高速扫描、快速识别表单&#x…

【开发技巧指北】IDEA修改默认绑定Maven的仓库地址

【开发技巧指北】IDEA修改默认绑定Maven的仓库地址 Microsoft Windows 11 家庭中文版 IIntelliJ IDEA 2025.1.1.1 默认的IDEA是有自己捆绑的Maven的&#xff08;这是修改完毕的截图&#xff09; 修改默认的Maven配置&#xff0c;路径是IDEA安装路径下的plugins D:\Softwares\I…

【2025最新】Java图书借阅管理系统:从课程作业到实战应用的完整解决方案

【2025最新】Java图书借阅管理系统&#xff1a;从课程作业到实战应用的完整解决方案 目录 【2025最新】Java图书借阅管理系统&#xff1a;从课程作业到实战应用的完整解决方案**系统概述** **核心功能模块详解****1. 系统登录与权限控制****2. 借阅管理模块****3. 用户角色管理…

springcloud openfeign 请求报错 java.net.UnknownHostException:

现象 背景 项目内部服务之间使用openfeign通过eureka注册中心进行服务间调用&#xff0c;与外部通过http直接调用。外部调用某个业务方提供的接口需要证书校验&#xff0c;因对方未提供证书故设置了忽略证书校验代码如下 Configuration public class IgnoreHttpsSSLClient {B…

【harbor】--配置https

使用自建的 CA 证书来自签署和启用 HTTPS 通信。 &#xff08;1&#xff09;生成 CA认证 使用 OpenSSL 生成一个 2048位的私钥这是 自建 CA&#xff08;证书颁发机构&#xff09; 的私钥&#xff0c;后续会用它来签发证书。 # 1创建CA认证 cd 到harbor [rootlocalhost harbo…

OptiStruct实例:消声器前盖ERP分析(2)RADSND基础理论

13.2 Radiated Sound Output Analysis( RADSND ) RADSND 方法通过瑞利积分来求解结构对外的辐射噪声。其基本思路是分为两个阶段&#xff0c;如图 13-12 所示。 图13-12 结构辐射噪声计算示意图 第一阶段采用有限元方法&#xff0c;通过频响分析(模态叠加法、直接法)工况计算结…

barker-OFDM模糊函数原理及仿真

文章目录 前言一、巴克码序列二、barker-OFDM 信号1、OFDM 信号表达式2、模糊函数表达式 三、MATLAB 仿真1、MATLAB 核心源码2、仿真结果①、barker-OFDM 模糊函数②、barker-OFDM 距离分辨率③、barker-OFDM 速度分辨率④、barker-OFDM 等高线图 四、资源自取 前言 本文进行 …

3.RV1126-OPENCV 图像叠加

一.功能介绍 图像叠加&#xff1a;就是在一张图片上放上自己想要的图片&#xff0c;如LOGO&#xff0c;时间等。有点像之前提到的OSD原理一样。例如&#xff1a;下图一张图片&#xff0c;在左上角增加其他图片。 二.OPENCV中图像叠加常用的API 1. copyTo方法进行图像叠加 原理…