python打卡day41

news2025/6/2 13:03:38

简单CNN

  1. 数据增强
  2. 卷积神经网络定义的写法
  3. batch归一化:调整一个批次的分布,常用与图像数据
  4. 特征图:只有卷积操作输出的才叫特征图
  5. 调度器:直接修改基础学习率

一、数据增强

在图像数据预处理环节,为提升数据多样性,可采用数据增强(数据增广)策略。该策略通常不改变单次训练的样本总数,而是通过对现有图像进行多样化变换,使每次训练输入的样本呈现更丰富的形态差异,从而有效扩展模型训练的样本空间多样性。

常见的修改策略包括以下几类

1. 几何变换:如旋转、缩放、平移、剪裁、裁剪、翻转

2. 像素变换:如修改颜色、亮度、对比度、饱和度、色相、高斯模糊(模拟对焦失败)、增加噪声、马赛克

3. 语义增强(暂时不用):mixup,对图像进行结构性改造、cutout随机遮挡等

此外,在数据极少的场景长,常常用生成模型来扩充数据集,如GAN、VAE等。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np

# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([
    # 随机裁剪图像,从原图中随机截取32x32大小的区域
    transforms.RandomCrop(32, padding=4),
    # 随机水平翻转图像(概率0.5)
    transforms.RandomHorizontalFlip(),
    # 随机颜色抖动:亮度、对比度、饱和度和色调随机变化
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    # 随机旋转图像(最大角度15度)
    transforms.RandomRotation(15),
    # 将PIL图像或numpy数组转换为张量
    transforms.ToTensor(),
    # 标准化处理:每个通道的均值和标准差,使数据分布更合理
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./dataCIFAR',
    train=True,
    download=True,
    transform=train_transform  # 使用增强后的预处理
)

test_dataset = datasets.CIFAR10(
    root='./dataCIFAR',
    train=False,
    transform=test_transform  # 测试集不使用增强
)

# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

二、 CNN模型

卷积的本质:通过卷积核在输入通道上的滑动乘积,提取跨通道的空间特征。所以只需要定义几个参数即可

1. 卷积核大小:卷积核的大小,如3x3、5x5、7x7等。

2. 输入通道数:输入图片的通道数,如1(单通道图片)、3(RGB图片)、4(RGBA图片)等。

3. 输出通道数:卷积核的个数,即输出的通道数。如本模型中通过 32→64→128 逐步增加特征复杂度

4. 步长(stride):卷积核的滑动步长,默认为1。

# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()  # 继承父类初始化
        
        # ---------------------- 第一个卷积块 ----------------------
        # 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素
        self.conv1 = nn.Conv2d(
            in_channels=3,       # 输入通道数(图像的RGB通道)
            out_channels=32,     # 输出通道数(生成32个新特征图)
            kernel_size=3,       # 卷积核尺寸(3x3像素)
            padding=1            # 边缘填充1像素,保持输出尺寸与输入相同
        )
        # 批量归一化层:对32个输出通道进行归一化,加速训练
        self.bn1 = nn.BatchNorm2d(num_features=32)
        # ReLU激活函数:引入非线性,公式:max(0, x)
        self.relu1 = nn.ReLU()
        # 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size
        
        # ---------------------- 第二个卷积块 ----------------------
        # 卷积层2:输入32通道(来自conv1的输出),输出64通道
        self.conv2 = nn.Conv2d(
            in_channels=32,      # 输入通道数(前一层的输出通道数)
            out_channels=64,     # 输出通道数(特征图数量翻倍)
            kernel_size=3,       # 卷积核尺寸不变
            padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后)
        )
        self.bn2 = nn.BatchNorm2d(num_features=64)
        self.relu2 = nn.ReLU()
        self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8
        
        # ---------------------- 第三个卷积块 ----------------------
        # 卷积层3:输入64通道,输出128通道
        self.conv3 = nn.Conv2d(
            in_channels=64,      # 输入通道数(前一层的输出通道数)
            out_channels=128,    # 输出通道数(特征图数量再次翻倍)
            kernel_size=3,
            padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后)
        )
        self.bn3 = nn.BatchNorm2d(num_features=128)
        self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)
        self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4
        
        # ---------------------- 全连接层(分类器) ----------------------
        # 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维
        self.fc1 = nn.Linear(
            in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)
            out_features=512          # 输出维度(隐藏层神经元数)
        )
        # Dropout层:训练时随机丢弃50%神经元,防止过拟合
        self.dropout = nn.Dropout(p=0.5)
        # 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)
        self.fc2 = nn.Linear(in_features=512, out_features=10)

    def forward(self, x):
        # 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)
        
        # ---------- 卷积块1处理 ----------
        x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)
        x = self.bn1(x)         # 批量归一化,不改变尺寸
        x = self.relu1(x)       # 激活函数,不改变尺寸
        x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)
        
        # ---------- 卷积块2处理 ----------
        x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)
        x = self.bn2(x)
        x = self.relu2(x)
        x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]
        
        # ---------- 卷积块3处理 ----------
        x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)
        x = self.bn3(x)
        x = self.relu3(x)
        x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]
        
        # ---------- 展平与全连接层 ----------
        # 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]
        x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变
        
        x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]
        x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)
        x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸
        x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)
        
        return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数



# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)

三、 batch归一化

Batch 归一化是深度学习中常用的一种归一化技术,加速模型收敛并提升泛化能力。通常位于卷积层后。

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

其中,BatchNorm 应在池化前对空间维度的特征完成归一化,以确保归一化统计量基于足够多的样本(空间位置),避免池化导致的统计量偏差

旨在解决深度神经网络训练中的内部协变量偏移问题:深层网络中,随着前层参数更新,后层输入分布会发生变化,导致模型需要不断适应新分布,训练难度增加。就好比你在学新知识,知识体系的基础一直在变,你就得不断重新适应,模型训练也是如此,这就导致训练变得困难,这就是内部协变量偏移问题。

通过对每个批次的输入数据进行标准化(均值为 0、方差为 1),想象把一堆杂乱无章、分布不同的数据规整到一个标准的样子。

1. 使各层输入分布稳定,让数据处于激活函数比较合适的区域,缓解梯度消失 / 爆炸问题;

2. 因为数据分布稳定了,所以允许使用更大的学习率,提升训练效率。

四、 特征图

卷积层输出的叫做特征图,通过输入尺寸和卷积核的尺寸、步长可以计算出输出尺寸。可以通过可视化中间层的特征图,理解 CNN 如何从底层特征(如边缘)逐步提取高层语义特征(如物体部件、整体结构)。MLP是不输出特征图的,因为他输出的一维向量,无法保留空间维度

特征图就代表着在之前特征提取器上提取到的特征,可以通过 Grad-CAM方法来查看模型在识别图像时,特征图所对应的权重是多少。-----深度学习可解释性

五、 调度器

criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
    optimizer,        # 指定要控制的优化器(这里是Adam)
    mode='min',       # 监测的指标是"最小化"(如损失函数)
    patience=3,       # 如果连续3个epoch指标没有改善,才降低LR
    factor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)

ReduceLROnPlateau调度器适用于当监测的指标(如验证损失)停滞时降低学习率。是大多数任务的首选调度器,尤其适合验证集波动较大的情况

这种学习率调度器的方法相较于之前只有单纯的优化器,是一种超参数的优化方法,它通过调整学习率来优化模型。

常见的优化器有 adam、SGD、RMSprop 等,而除此之外学习率调度器有 lr_scheduler.StepLR、lr_scheduler.ExponentialLR、lr_scheduler.CosineAnnealingLR 等。

六、总结

# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
    model.train()  # 设置为训练模式
    
    # 记录每个 iteration 的损失
    all_iter_losses = []  # 存储所有 batch 的损失
    iter_indices = []     # 存储 iteration 序号
    
    # 记录每个 epoch 的准确率和损失
    train_acc_history = []
    test_acc_history = []
    train_loss_history = []
    test_loss_history = []
    
    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)  # 移至GPU
            
            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            # 记录当前 iteration 的损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
            
            # 统计准确率和损失
            running_loss += iter_loss
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            
            # 每100个批次打印一次训练信息
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                      f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        # 计算当前epoch的平均训练损失和准确率
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        train_acc_history.append(epoch_train_acc)
        train_loss_history.append(epoch_train_loss)
        
        # 测试阶段
        model.eval()  # 设置为评估模式
        test_loss = 0
        correct_test = 0
        total_test = 0
        
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        test_acc_history.append(epoch_test_acc)
        test_loss_history.append(epoch_test_loss)
        
        # 更新学习率调度器
        scheduler.step(epoch_test_loss)
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
    # 绘制所有 iteration 的损失曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    
    # 绘制每个 epoch 的准确率和损失曲线
    plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
    
    return epoch_test_acc  # 返回最终测试准确率

# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()

# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
    epochs = range(1, len(train_acc) + 1)
    
    plt.figure(figsize=(12, 4))
    
    # 绘制准确率曲线
    plt.subplot(1, 2, 1)
    plt.plot(epochs, train_acc, 'b-', label='训练准确率')
    plt.plot(epochs, test_acc, 'r-', label='测试准确率')
    plt.xlabel('Epoch')
    plt.ylabel('准确率 (%)')
    plt.title('训练和测试准确率')
    plt.legend()
    plt.grid(True)
    
    # 绘制损失曲线
    plt.subplot(1, 2, 2)
    plt.plot(epochs, train_loss, 'b-', label='训练损失')
    plt.plot(epochs, test_loss, 'r-', label='测试损失')
    plt.xlabel('Epoch')
    plt.ylabel('损失值')
    plt.title('训练和测试损失')
    plt.legend()
    plt.grid(True)
    
    plt.tight_layout()
    plt.show()

# 8. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")

@浙大疏锦行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2394296.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IM系统的负载均衡

1.IM场景的负载均衡 2.方案总览 SDK层想要连接一个TCP网关或者WebSocket网关的方案 SDK单地址:在SDK中写死某个网关的IP或者域名,缺点是更换地址需要重新打包SDK SDK多地址:防止某一个地址嗝屁了写上多个地址用足保持高可用 暴露接口给客户端:SDK层访问接口动态获得地址 注…

使用 Zabbix 监控 MySQL 存储空间和性能指标的完整实践指南

目录 引言 一、最终目标支持功能 二、监控方案设计 2.1 技术选型 2.2 设计思路 三、实现步骤 3.1 准备工作 3.11 创建 MySQL 监控账号 3.12 配置 .my.cnf 文件 3.2 编写统一脚本 3.3 配置 Zabbix Agent UserParameter 3.4 Zabbix 前端配置建议 四、总结 引言 MySQL …

【技能拾遗】——家庭宽带单线复用布线与配置(移动2025版)

📖 前言:在家庭网络拓扑中,客厅到弱电箱只预埋了一根网线,由于已将广电的有线电视取消并改用IPTV。现在需要解决在客厅布置路由器和观看IPTV问题,这里就用到单线复用技术。 目录 🕒 1. 拓扑规划&#x1f55…

异步日志监控:FastAPI与MongoDB的高效整合之道

title: 异步日志监控:FastAPI与MongoDB的高效整合之道 date: 2025/05/27 17:49:39 updated: 2025/05/27 17:49:39 author: cmdragon excerpt: FastAPI与MongoDB整合实现日志监控系统的实战指南。首先配置MongoDB异步连接,定义日志数据模型。核心功能包括日志写入接口、聚合…

在 Android 上备份短信:保护您的对话

尽管我们的Android手机有足够的存储空间来存储无数的短信,但由于设备故障、意外删除或其他意外原因,您可能会丢失重要的对话。幸运的是,我们找到了 5 种有效的 Android SMS 备份解决方案,确保您的数字聊天和信息保持安全且可访问。…

标题:2025海外短剧爆发年:APP+H5双端系统开发,解锁全球流量与变现新大陆

描述: 2025年出海新风口!深度解析海外短剧系统开发核心(APPH5双端),揭秘高效开发策略与商业化路径,助您抢占万亿美元市场! 全球娱乐消费模式正在剧变。2025年,海外短剧市场已从蓝海…

解决RAGFlow(v0.19.0)有部分PDF无法解析成功的问题。

ragflow版本为:v0.19.0 1.解析的时候报错:Internal server error while chunking: Coordinate lower is less than upper。 看报错怀疑是分片的问题,于是把文档的切片方法中的“建议文本块大小”数值(默认512)调小&…

c#基础08(数组)

文章目录 数组数组概念声明数组初始化数组赋值给数组访问数组元素 集合动态数组(ArrayList)使用foreach循环C#数组细节多维数组传递数组给函数参数数组 数组 数组概念 数组是一个存储相同类型元素的固定大小的顺序集合。数组是用来存储数据的集合,通常认为数组是一…

嵌入式学习--江协stm32day3

这是我目前为止认为最重要的模块--TIM定时器,这里我们主要学习通用定时器 最小的计数计时单元为时基单元,包括PSC,ARR,CNT CK_PSC(Prescaler,预分频器):作用是对输入时钟信号进行分…

4.8.1 利用Spark SQL实现词频统计

在利用Spark SQL实现词频统计的实战中,首先需要准备单词文件并上传至HDFS。接着,可以通过交互式方法或创建Spark项目来实现词频统计。交互式方法包括读取文本文件生成数据集,扁平化映射得到新数据集,然后将数据集转成数据帧&#…

PyTorch中nn.Module详解

直接print(dir(nn.Module)),得到如下内容: 一、模型结构与参数 parameters() 用途:返回模块的所有可训练参数(如权重、偏置)。示例:for param in model.parameters():print(param.shape)named_parameters…

动态表单开发避坑:改变input的值不会触发change事件即时修复策略-WdatePicker ——仙盟创梦IDE

原始传统模式 onchange <input onchange"未来之窗东方仙盟change(this)" oni > <script>function 未来之窗东方仙盟change(onj){console.log("未来之窗东方仙盟change",onj.value)} </script> 测试 原始传统模式 oninput <input …

10.安卓逆向2-frida hook技术-frida基本使用-frida指令(用于hook)

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a;图灵Python学院 工具下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1bb8NhJc9eTuLzQr39lF55Q?pwdzy89 提取码&#xff1…

动态设置微信小程序页面标题(navigationBarTitleText属性)

前言&#xff1a; 最近在公司进行小程序研发的时候&#xff0c;产品给出了一个动态加载页面标题的需求&#xff0c;经过调研之后将结果在这里与各位伙伴进行分享。 代码展示&#xff1a; 在.json文件中进行初始配置&#xff1a; { "usingComponents": {}, &q…

Flutter下的一点实践

目录 1、背景2、refena创世纪代码3、localsend里refena的刷新3.1 初始状态3.2 发起设备扫描流程3.3 扫描过程3.3 刷新界面 4.localsend的设备扫描流程4.1 UDP广播设备注册流程4.2 TCP/HTTP设备注册流程4.3 localsend的服务器初始化工作4.4总结 1、背景 在很久以前&#xff0c;…

VScode ios 模拟器安装cocoapods

使用 Homebrew 安装&#xff08;推荐&#xff09; 如果你有 Homebrew&#xff0c;直接用它安装更稳定&#xff1a; brew install cocoapods

Redis最佳实践——安全与稳定性保障之数据持久化详解

Redis 在电商应用的安全与稳定性保障之数据持久化全面详解 一、持久化机制深度解析 1. 持久化策略矩阵 策略触发方式数据完整性恢复速度适用场景RDB定时快照分钟级快容灾备份/快速恢复AOF实时追加日志秒级慢金融交易/订单关键操作混合模式RDBAOF同时启用秒级中等高安全要求场…

K 值选对,准确率翻倍:KNN 算法调参的黄金法则

目录 一、背景介绍 二、KNN 算法原理 2.1 核心思想 2.2 距离度量方法 2.3 算法流程 2.4算法结构&#xff1a; 三、KNN 算法代码实现 3.1 基于 Scikit-learn 的简单实现 3.2 手动实现 KNN&#xff08;自定义代码&#xff09; 四、K 值选择与可视化分析 4.1 K 值对分类…

技术栈ES的介绍和使用

目录 1. 全文搜索引擎&#xff08;Elastic Search&#xff09;的由来2. Elastic Search 概述2.1 Elastic Search 介绍2.2 Elastic Search 功能2.3 Elastic Search 特点 3. 安装 Elastic Search3.1 ES 的安装3.2 安装 kibana3.3 ES 客户端的安装 4. Elastic Search 基本概念4.1 …

Windows版本的postgres安装插件http

1、下载安装包 这里使用安装 pgsql-http 的扩展 源码地址&#xff1a;GitHub - pramsey/pgsql-http: HTTP client for PostgreSQL, retrieve a web page from inside the database. 编译的安装地址&#xff1a;http extension for windows updated to include PostgreSQL17 …