代码随想录打卡|Day50 图论(拓扑排序精讲 、dijkstra(朴素版)精讲 )

news2025/6/2 4:28:06

图论part08

拓扑排序精讲

代码随想录讲解链接
题目链接

在这里插入图片描述

思路

  • 在这个题目之中,个别文件的处理依赖于别的文件,因此,文件的处理顺序十分重要。
  • 我们用图来表示文件的处理顺序,文件s指向文件t,则说明如果要正确的处理文件t,那么就必须先处理文件s。换句话说,文件t所对应的入度为1,当我们处理好文件s之后,文件t的入度就变成0,于是就可以处理文件t了。
  • 同理,当我们将文件t处理之后,文件t指向的下一个文件x也就可以正常处理了(x入度为0),以此类推,最终根据结果集之中的文件个数可以正确的判断是否能够成功处理。
import java.util.*;

public class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);

        int N = sc.nextInt();
        int M = sc.nextInt();
        // 构建图从而记录文件之间的依赖关系
        List<List<Integer>> umap = new ArrayList<>();
        // 记录每个文件的入度
        int[] inDegree = new int[N];

        
        for(int i = 0 ; i < N ; i++)
            umap.add(new ArrayList<>());

        // 填充边的关系
        for(int i = 0 ; i < M ; i++){
            int s = sc.nextInt();
            int t = sc.nextInt();
            umap.get(s).add(t); //表示s指向t
            inDegree[t] ++; //由于s指向t,所以t的入度加一
        }


        Queue<Integer> queue = new LinkedList<>();
        // 找出所有节点之中入度为0的节点
        for(int i = 0 ; i < N ; i++){
            if(inDegree[i] == 0){
                queue.add(i);
            }
        }
        List<Integer> result = new ArrayList<>();

        // 拓扑排序流程
        while(!queue.isEmpty()){
            int cur = queue.poll();
            result.add(cur);
            // 上面将节点cur加入到结果集之后,cur指向的所有节点的入度都应该减1
            for(int nextNode : umap.get(cur)){
                inDegree[nextNode] --;
                // 当某个节点的入度为0的时候,将其添加到队列之中
                if(inDegree[nextNode] == 0){
                    queue.add(nextNode);
                }
            }
        }
        // 在这里如果结果集之中的记录个数等于文件个数,则证明这些文件可以正常处理。
        // 若果结果集之中的记录个数小于文件个数,这证明这些文件的依赖一定存在环。
        if(result.size() == N){
            for(int i = 0 ; i < N - 1 ; i++){
                System.out.print(result.get(i)+" ");
            }
                System.out.print(result.get(N - 1 ));
        }else{
            System.out.println(-1);
        }
    }
}

dijkstra(朴素版)精讲

代码随想录链接
题目链接
在这里插入图片描述
在这里插入图片描述

import java.util.*;

public class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int m = sc.nextInt();

        int[][] graph = new int[n+1][n+1];

        for(int i = 0 ; i <= n ; i++)
            Arrays.fill(graph[i],Integer.MAX_VALUE);

        for(int i = 0 ; i < m ; i++){
            int s = sc.nextInt();
            int t = sc.nextInt();
            int val = sc.nextInt();
            graph[s][t] = val;
        }
        int start = 1;
        int end = n;

        // 存储原点到每个节点的最短距离
        int[] minDis = new int[n + 1];
        Arrays.fill(minDis,Integer.MAX_VALUE);


        // 判断当前的节点是否已经被访问过

        boolean[] visted = new boolean[n+1];

        // 原点到自身的距离为0
        minDis[start] = 0;

        for(int i = 1 ; i <= n ; i++){
            // 初始化用于记录的最小值和当前节点

            int minVal = Integer.MAX_VALUE;
            int cur = 1;


            // 寻找val最小的边
            for(int v = 1 ; v <= n ; v++){
                if(!visted[v] && minDis[v] < minVal){
                    cur = v;
                    minVal = minDis[v];
                }
            }

            visted[cur] = true;

            // 更新minDis数组

            for(int v = 1 ; v <= n ; v++ ){
                if(!visted[v] && graph[cur][v] != Integer.MAX_VALUE && minDis[cur] + graph[cur][v] < minDis[v] ){
                    minDis[v] = minDis[cur] + graph[cur][v];
                }
            }
        }

        if (minDis[end] == Integer.MAX_VALUE) {
            System.out.println(-1); // 不能到达终点
        } else {
            System.out.println(minDis[end]); // 到达终点最短路径
        }
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2393520.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SI24R05国产低功耗2.4GHz+125K低频唤醒SoC人员定位/畜牧业牛羊定位/资产管理定位方案芯片

目录 SI24R05简介功能框图 主要特性开发工具方案特性 SI24R05简介 Si24R05 是一款高度集成的低功耗 SOC 芯片&#xff0c;具有低功耗、Low Pin Count、 宽电压工作范围&#xff0c;集成了 13/14/15/16 位精度的 ADC、LVD、UART、SPI、I2C、TIMER、WUP、IWDG、RTC、无线收发器、…

基于ELK的分布式日志实时分析与可视化系统设计

目录 一、ELK平台介绍 1.ELK概述 2.Elasticsearch 3.Logstash 4.Kibana 二、部署ES群集 1.资源清单 2.基本配置 3.安装Elasticsearch&#xff08;elk1上、elk2上、elk3上&#xff09; 4.安装logstash&#xff08;elk1上&#xff09; 5.Filebeat 6.安装Kibana&#x…

酒店管理系统设计与实现

本科毕业设计(论文) 设计(论文)题目 酒店管理系统设计与实现 学生姓名 学生学号 所在学院 专业班级 校内指导教师 李建 企业指导教师 毕业设计(论文)真实性承诺及声明 学生对毕业设计(论文)真实性承诺 本人郑重声明:所提交的毕业设计(论文)作品是本人在指导教师的指…

OpenCV---pointPolygonTest

一、基本概念与用途 pointPolygonTest 是 OpenCV 中用于判断点与多边形关系的重要函数&#xff0c;常用于&#xff1a; 目标检测&#xff1a;判断像素点是否属于检测到的轮廓区域碰撞检测&#xff1a;检测物体是否重叠图像分割&#xff1a;确定点是否在分割区域内几何分析&am…

Qt 的简单示例 -- 地址簿

这个工程里有两个窗口&#xff0c;都是QWidget派生的窗口 主窗口&#xff1a; 1. 运用了布局&#xff0c;按钮控件&#xff0c;单行编辑框&#xff0c;富文本编辑框等窗口部件&#xff1b; 2. 运用了 QMap 类&#xff1b; 3. 实现了点击按钮弹出子窗口的功能&#xff0c;这里子…

什么是DevOps的核心目标?它如何解决传统开发与运维之间的冲突?​

在当今数字化转型加速的时代&#xff0c;DevOps 已成为软件开发领域备受瞩目的明星理念。今天&#xff0c;本文将聚焦于 DevOps 的核心目标&#xff0c;并深入探讨它如何巧妙化解传统开发与运维之间的冲突&#xff0c;为大家揭开 DevOps 的神秘面纱并分享实用经验。本次介绍的与…

Android studio 查看aar源码出现/* compiled code */

如图查看aar源码时看不到具体实现&#xff0c;在排除是sdk版本导致的问题后&#xff0c;下面说解决方法 打开设置&#xff0c;找到插件 输入decompiler 搜索 这个是自带的反编译工具&#xff0c;启用就好了

用HTML5+JavaScript实现汉字转拼音工具

用HTML5JavaScript实现汉字转拼音工具 前一篇博文&#xff08;https://blog.csdn.net/cnds123/article/details/148067680&#xff09;提到&#xff0c;当需要将拼音添加到汉字上面时&#xff0c;用python实现比HTML5JavaScript实现繁琐。在这篇博文中用HTML5JavaScript实现汉…

基于Java,SpringBoot,Vue,UniAPP医院预约挂号买药就诊病例微信小程序系统设计

摘要 随着医疗信息化的不断推进以及“互联网医疗”模式的广泛普及&#xff0c;传统医院挂号流程中存在的排队时间长、资源分配不均等问题日益凸显&#xff0c;急需通过数字化手段加以解决。本研究设计并实现了一套基于Java、SpringBoot、Vue与UniAPP技术栈的医院预约挂号微信小…

ONNX模型的动态和静态量化

引言  通常我们将模型转换为onnx格式之后&#xff0c;模型的体积可能比较大&#xff0c;这样在某些场景下就无法适用。最近想在移动端部署语音识别、合成模型&#xff0c;但是目前的效果较好的模型动辄几个G&#xff0c;于是便想着将模型压缩一下。本文探索了两种压缩方法&…

如何用Python抓取Google Scholar

文章目录 [TOC](文章目录) 前言一、为什么要抓取Google Scholar&#xff1f;二、Google Scholar 抓取需要什么三、为什么代理对于稳定的抓取是必要的四、一步一步谷歌学者抓取教程4.1. 分页和循环4.2. 运行脚本 五、完整的Google Scholar抓取代码六、抓取Google Scholar的高级提…

Wireshark对usb设备进行抓包找不到USBPcap接口的解决方案

引言 近日工作需要针对usb设备进行抓包&#xff0c;但按照wireshark安装程序流程一步步走&#xff0c;即使勾选了安装USBPcap安装完成后开启wireshark依然不显示USBPcap接口&#xff0c;随设法进行解决。 最终能够正常显示USBPcap接口并能够正常使用进行抓包 解决方案&#x…

Socket 编程 UDP

目录 1. UDP网络编程 1.1 echo server 1.1.1 接口 1.1.1.1 创建套接字 1.1.1.2 绑定 1.1.1.3 bzero 1.1.1.4 htons&#xff08;主机序列转网络序列&#xff09; 1.1.1.5 inet_addr&#xff08;主机序列IP转网络序列IP&#xff09; 1.1.1.6 recvfrom&#xff08;让服务…

Jenkins实践(8):服务器A通过SSH调用服务器B执行Python自动化脚本

Jenkins实践(8):服务器A通过SSH调用服务器B执行Python自动化脚本 1、需求: 1、Jenkins服务器在74上,Python脚本在196服务器上 2、需要在服务器74的Jenkins上调用196上的脚本执行Python自动化测试 2、操作步骤 第一步:Linux Centos7配置SSH免密登录 Linux Centos7配置S…

lua的注意事项2

总之&#xff0c;下面的返回值不是10&#xff0c;a&#xff0c;b 而且

前端八股之HTML

前端秘籍-HTML篇 1. src和href的区别 src 用于替换当前元素&#xff0c;href 用于在当前文档和引用资源之间确立联系。 &#xff08;1&#xff09;src src 是 source 的缩写&#xff0c;指向外部资源的位置&#xff0c;指向的内容将会嵌入到文档中当前标签所在位置&#xff1…

鲲鹏Arm+麒麟V10,国产化信创 K8s 离线部署保姆级教程

Rainbond V6 国产化部署教程&#xff0c;针对鲲鹏 CPU 麒麟 V10 的离线环境&#xff0c;手把手教你从环境准备到应用上线&#xff0c;所有依赖包提前打包好&#xff0c;步骤写成傻瓜式操作指南。别说技术团队了&#xff0c;照着文档一步步来&#xff0c;让你领导来都能独立完成…

【C++ Qt】认识Qt、Qt 项目搭建流程(图文并茂、通俗易懂)

每日激励&#xff1a;“不设限和自我肯定的心态&#xff1a;I can do all things。 — Stephen Curry” 绪论​&#xff1a; 本章将开启Qt的学习&#xff0c;Qt是一个较为古老但仍然在GUI图形化界面设计中有着举足轻重的地位&#xff0c;因为它适合嵌入式和多种平台而被广泛使用…

IoT/HCIP实验-1/物联网开发平台实验Part2(HCIP-IoT实验手册版)

文章目录 概述产品和设备实例的产品和设备产品和设备的关联单个产品有多个设备为产品创建多个设备产品模型和物模型设备影子&#xff08;远程代理&#xff09; 新建产品模型定义编解码插件开发编解码插件工作原理消息类型与二进制码流添加消息&#xff08;数据上报消息&#xf…

Replacing iptables with eBPF in Kubernetes with Cilium

source: https://archive.fosdem.org/2020/schedule/event/replacing_iptables_with_ebpf/attachments/slides/3622/export/events/attachments/replacing_iptables_with_ebpf/slides/3622/Cilium_FOSDEM_2020.pdf 使用Cilium&#xff0c;结合eBPF、Envoy、Istio和Hubble等技术…