Matlab实现LSTM-SVM时间序列预测,作者:机器学习之心

news2025/6/2 7:44:07

Matlab实现LSTM-SVM时间序列预测,作者:机器学习之心

目录

    • Matlab实现LSTM-SVM时间序列预测,作者:机器学习之心
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

基本介绍

该代码实现了一个结合LSTM和SVM的混合模型,用于时间序列数据的回归预测。具体功能包括:

数据预处理:划分时间窗口、归一化、划分训练集和测试集。

LSTM特征提取:构建LSTM网络提取时间序列的深层特征。

SVM回归预测:将LSTM提取的特征输入SVM模型进行训练和预测。

模型评估:计算RMSE、R²、MAE、MAPE、MBE、MSE等指标,并通过图表展示预测结果和误差分布。

算法步骤
初始化与数据导入:

清除环境变量,添加路径,导入单列时间序列数据(data.xlsx)。

数据窗口划分:

设定时间窗口参数(kim=7为历史步长,zim=1为预测步长),将数据重构为输入-输出对。

数据集划分与归一化:

按比例(num_size=0.7)划分训练集和测试集,使用mapminmax归一化数据。

LSTM模型构建与训练:

网络结构:输入层 → LSTM层(64单元) → ReLU层 → Dropout层(概率0.2) → 全连接层 → 回归层。

训练参数:Adam优化器,学习率0.001,最大迭代50次,批大小32,梯度阈值10。

LSTM特征提取:

从全连接层(fc)提取特征,作为SVM的输入。

SVM模型训练与预测:

使用libsvmtrain训练SVM(核函数为线性,参数-c 0.8 -g 100),对训练集和测试集进行预测。

反归一化与评估:

计算RMSE、R²、MAE、MAPE、MBE、MSE,绘制预测对比图、误差图及拟合效果图。

参数设定
时间序列参数:

kim=7:用7个历史时间点作为输入。

zim=1:预测下一个1个时间点的值。

数据集划分:

num_size=0.7:70%的数据作为训练集。

LSTM模型参数:

网络结构:64个LSTM单元,Dropout概率0.2。

训练选项:50个epoch,批大小32,学习率0.001,梯度阈值10。

SVM参数:

bestc=0.8(正则化参数),bestg=100(核函数参数)。

评估指标:

包含RMSE、R²、MAE、MAPE、MBE、MSE。

注意事项
版本依赖:需MATLAB 2023b及以上版本。

模型特点:LSTM用于捕获时序依赖,SVM用于增强回归性能,适合中长期时间序列预测任务。

在这里插入图片描述

程序设计

完整源码私信回复Matlab实现LSTM-SVM时间序列预测,作者:机器学习之心


.rtcContent { padding: 30px; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }

%% 初始化
clear
close all
clc
addpath(genpath(pwd))
disp('此程序务必用2023b及其以上版本的MATLAB!否则会报错!')

%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim =  7;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%  格式转换
for i = 1 : M 
    vp_train{i, 1} = p_train(:, i);
end

for i = 1 : N 
    vp_test{i, 1} = p_test(:, i);
end


%% 构建的LSTM模型


   

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2393375.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JAVA 集合的进阶 泛型的继承和通配符

1 泛型通配符 可以对传递的类型进行限定 1.1 格式 ? 表示不确定的类型 ?extends E: 表示可以传递 E 或者 E 所有的子类类型 ?super E: 表示可以传递 E 或者 E 所有的父类类…

下一代液晶显示底层技术与九天画芯的技术突围

一、液晶产业:撑起数字经济的显示脊梁 (一)全球显示市场的核心支柱 作为电子信息产业的战略基石,液晶显示(LCD)占据全球平板显示市场超 60% 的份额,2022 年全球市场规模达 782.41 亿元&#xf…

[NOIP 2001 普及组] 求先序排列 Java

import java.util.*;public class Main {public static void main(String[] args) {Scanner sc new Scanner(System.in);String infixOrder sc.nextLine(); // 中序String postOrder sc.nextLine(); // 后序sc.close();System.out.println(preOrder(infixOrder, postOrder))…

Rockey Linux 安装ffmpeg

1.环境准备 Rockey linux 9.2 ffmpeg 静态资源包 这个是我自己的: https://download.csdn.net/download/liudongyang123/90920340https://download.csdn.net/download/liudongyang123/90920340 这个是官网的 Releases BtbN/FFmpeg-Builds GitHub 以上两个资…

STM32 Modbus RTU从机开发实战:核心实现与五大调试陷阱解析

知识点1【CRC校验】 CRC校验生成网址 CRC(循环冗余校验)在线计算_ip33.com 知识点2【代码演示】 代码书写思路 代码演示 main.c #include "stm32f10x.h" #include "stm32f10x_conf.h" #include "rs485.h"int main(voi…

Python----目标检测(《Fast R-CNN》和Fast R-CNN)

一、《Fast R-CNN》 1.1、基本信息 作者:Ross Girshick 机构:Microsoft Research 发表时间:2015年 论文链接:arXiv:1504.08083 代码开源:GitHub仓库(MIT License) 1.2、主要内容 Fast R…

iEKF的二维应用实例

如果熟悉 EKF 与卡尔曼的推导的话,iEKF 就比较容易理解,关于卡尔曼滤波的推导以及EKF,可以参考以前的文章: 卡尔曼滤波原理:https://blog.csdn.net/a_xiaoning/article/details/130564473?spm1001.2014.3001.5502 E…

【通关文件操作(下)】--文件的顺序读写(续),sprintf和sscanf函数,文件的随机读写,文件缓冲区,更新文件

目录 四.文件的顺序读写(续) 4.8--fwrite函数 4.9--fread函数 五.sprintf函数和sscanf函数 5.1--函数对比 5.2--sprintf函数 5.3--sscanf函数 六.文件的随机读写 6.1--fseek函数 6.2--ftell函数 6.3--rewind函数 七.文件缓冲区 7.1--fflush函数 八.更新文件 &…

mysql的Memory引擎的深入了解

目录 1、Memory引擎介绍 2、Memory内存结构 3、内存表的锁 4、持久化 5、优缺点 6、应用 前言 Memory 存储引擎 是 MySQL 中一种高性能但非持久化的存储方案,适合临时数据存储和缓存场景。其核心优势在于极快的读写速度,需注意数据丢失风险和内存占…

【数据结构】——二叉树堆(下)

一、堆中两个重要的算法 我们前面学习了树的概念和结构,还要树的一种特殊树--二叉树,然后我们学习了堆,知道了堆分为大堆和小堆,接下来我们就使用堆来进行一个排序。 在学习我们的堆排序前,我们先详细学习一下我们堆…

t009-线上代驾管理系统

项目演示地址 摘 要 使用旧方法对线上代驾管理系统的信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在线上代驾管理系统的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题…

目标检测预测框置信度(Confidence Score)计算方式

预测框的置信度(Confidence Score)是目标检测模型输出的一个关键部分,它衡量了模型对一个预测框中包含特定类别对象的确定程度。 不同的目标检测模型(如Faster R-CNN、SSD、YOLO、DETR等)在计算置信度时有其特有的机制…

【题解-洛谷】B4295 [蓝桥杯青少年组国赛 2022] 报数游戏

题目:B4295 [蓝桥杯青少年组国赛 2022] 报数游戏 题目描述 某班级男生人数为 X X X 人,女生人数为 Y Y Y 人,现全班同学围成一个圆圈,并按照顺时针方向为每名同学编号(从 1 1 1 到 X Y XY XY)。现给…

Bootstrap项目 - 个人作品与成就展示网站

文章目录 前言一、项目整体概述1. 项目功能介绍1.1 导航栏1.2 首页模块1.3 关于我模块1.4 技能模块1.5 作品模块1.6 成就模块1.7 博客模块1.8 联系我模块 2. 技术选型说明 二、项目成果展示1. PC端展示1.1 首页1.2 关于我1.3 技能1.4 作品1.5 成就1.6 博客1.7 联系我 2. 移动端…

新能源汽车霍尔线束介绍

新能源汽车作为传统燃油车的重要替代方案,其核心驱动系统依赖于高效、精准的电子控制技术。在这一体系中,霍尔线束作为关键传感器组件,承担着电机转速、位置信号的实时采集与传输任务,其性能直接影响整车动力输出的稳定性和能量利…

气镇阀是什么?

01、阀门介绍: 油封机械真空泵的压缩室上开一小孔,并装上调节阀,当打开阀并调节入气量,转子转到某一位置,空气就通过此孔掺入压缩室以降低压缩比,从而使大部分蒸汽不致凝结而和掺入的气体一起被排除泵外起此…

SmolVLM2: The Smollest Video Model Ever(七)

编写测试代码与评价指标 现在的数据集里面只涉及tool的分类和手术phase的分类,所以编写的评价指标还是那些通用的,但是: predicted_labels:[The current surgical phase is CalotTriangleDissection, Grasper, Hook tool exists., The curre…

RFID综合项目实训 | 基于C#的一卡通管理系统

目录 基于C#的一卡通管理系统 【实验目的】 【实验设备】 【实验内容】 【实验步骤】 实验准备 第一部分 界面布局设计 ​第二部分 添加串口通讯函数及高频标签操作功能函数(部分代码) 第五部分 实验运行效果 基于C#的一卡通管理系统 【实验目的】 熟悉 …

mysql如何设置update时间字段自动更新?

之前在给网站做表设计的时候时间字段都是用的datetime类型,初始值都是设置的CURRENT_TIMESTAMP。 由于给文章表设计的有创建时间和更新时间两个字段,但是更新时间字段需要在更新文章后再次更新,当时由于不了解mysql还可以设置自动更新时间戳…

【第4章 图像与视频】4.5 操作图像的像素

文章目录 前言示例-获取和修改图像数据图像数据的遍历方式图像滤镜负片滤镜黑白滤镜浮雕滤镜filter滤镜属性 前言 getImageData() 与 putImageData() 这两个方法分别用来获取图像的像素信息,以及向图像中插入像素。与此同时,如果有需要,也可…