分布式锁总结

news2025/5/26 1:11:43

文章目录

  • 分布式锁
    • 什么是分布式锁?
    • 分布式锁的实现方式
      • 基于数据库(mysql)实现
      • 基于缓存(redis)
        • 多实例并发访问问题演示
          • 项目代码(使用redis)
          • 配置nginx.conf
          • jmeter压测复现问题
            • 并发是1,即不产生并发问题
            • 并发30测试,产生并发问题(虽然单实例是`synchronized`,但是这是分布式多实例)
      • redis 分布式锁:setnx实现
        • 分布式锁的过期时间和看门狗
        • 附:redis setnx相关命令和分布式锁
        • Redisson
          • 代码&测试
          • Redisson 底层原理
          • 实现可重入锁
          • redis分布式锁的问题?
          • redis主从架构问题?
          • Redlock(超半数加锁成功才成功)
          • 高并发分布式锁如何实现
      • 基于ZooKeeper实现
        • zookeeper节点类型
        • zookeeper的watch机制
        • zookeeper lock
          • 普通临时节点(羊群效应)
          • 顺序节点(公平,避免羊群效应)
        • Curator InterProcessMutex(可重入公平锁)
          • code&测试
          • InterProcessMutex 内部原理
            • 初始化
            • 加锁
            • watch
            • 释放锁
      • redis vs zookeeper AI回答

分布式锁

什么是分布式锁?

锁:共享资源;共享资源互斥的;多任务环境
分布式锁:如果多任务是多个JVM进程,需要一个外部锁,而不是JDK提供的锁

在分布式的部署环境下,通过锁机制来让多客户端互斥的对共享资源进行访问

  • 排它性:在同一时间只会有一个客户端能获取到锁,其它客户端无法同时获取

  • 避免死锁:这把锁在一段有限的时间之后,一定会被释放(正常释放或异常释放)

  • 高可用:获取或释放锁的机制必须高可用且性能佳

分布式锁的实现方式

基于数据库(mysql)实现

新建一个锁表

CREATE TABLE `methodLock` (
`id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键',  
`method_name` varchar(64) NOT NULL DEFAULT '' COMMENT '锁定的方法名',
`desc` varchar(1024) NOT NULL DEFAULT '备注信息',  
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '保存数据时间,自动生成',  
PRIMARY KEY (`id`),  
UNIQUE KEY `uidx_method_name` (`method_name `) USING BTREE ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='锁定中的方法';
  1. insert, delete(method_name有唯一约束)
    缺点:

    • 数据库单点会导致业务不可用
    • 锁没有失效时间:一旦解锁操作失败,就会导致锁记录一直在数据库中,其它线程无法再获得到锁。
    • 非重入锁:同一个线程在没有释放锁之前无法再次获得该锁。因为数据中数据已经存在记录了
    • 非公平锁
  2. 通过数据库的排它锁来实现

在查询语句后面增加for update(表锁,行锁),数据库会在查询过程中给数据库表增加排它锁。当某条记录被加上排他锁之后,其它线程无法再在该行记录上增加排它锁。可以认为获得排它锁的线程即可获得分布式锁,当获取到锁之后,可以执行方法的业务逻辑,执行完方法之后,再通过connection.commit()操作来释放锁

public boolean lock(){
    connection.setAutoCommit(false)
    while (true) {
        try {
            result = select * from methodLock where method_name=xxx for update;
            if (result == null) {
                return true;
            }
        } catch (Exception e) {
        }
        sleep(1000);
    }
    return false;
}

public void unlock(){
    connection.commit();
}

基于缓存(redis)

多实例并发访问问题演示
项目代码(使用redis)

见项目代码:减库存的例子

  • 让Springboot项目启动两个实例(即有两个JVM进程)
curl -X POST \
  http://localhost:8088/deduct_stock_sync \
  -H 'Content-Type: application/json'

curl -X POST \
  http://localhost:8089/deduct_stock_sync \
  -H 'Content-Type: application/json'

减库存调用测试
在这里插入图片描述

配置nginx.conf
http {
    include       mime.types;
    default_type  application/octet-stream;

    #log_format  main  '$remote_addr - $remote_user [$time_local] "$request" '
    #                  '$status $body_bytes_sent "$http_referer" '
    #                  '"$http_user_agent" "$http_x_forwarded_for"';

    #access_log  logs/access.log  main;

    sendfile        on;
    #tcp_nopush     on;

    #keepalive_timeout  0;
    keepalive_timeout  65;

    #gzip  on;
    upstream redislock{
		server localhost:8088 weight=1;
		server localhost:8089 weight=1;
	}

    server {
        listen       8080;
        server_name  localhost;

        #charset koi8-r;

        #access_log  logs/host.access.log  main;

        location / {
            root   html;
            index  index.html index.htm;
			proxy_pass  http://redislock;
        }
    }
}
  • nginx启动和关闭命令
mubi@mubideMacBook-Pro nginx $ sudo nginx
mubi@mubideMacBook-Pro nginx $ ps -ef | grep nginx
    0 47802     1   0  1:18下午 ??         0:00.00 nginx: master process nginx
   -2 47803 47802   0  1:18下午 ??         0:00.00 nginx: worker process
  501 47835 20264   0  1:18下午 ttys001    0:00.00 grep --color=always nginx
mubi@mubideMacBook-Pro nginx $
sudo nginx -s stop
  • 访问测试
curl -X POST \
  http://localhost:8080/deduct_stock_sync \
  -H 'Content-Type: application/json'
jmeter压测复现问题
  • redis 设置 stock 为 100
    在这里插入图片描述
并发是1,即不产生并发问题

在这里插入图片描述
库存减少30, redis get结果会是最终的70,符合

并发30测试,产生并发问题(虽然单实例是synchronized,但是这是分布式多实例)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 并发30访问测试结果:并不是最后的70

在这里插入图片描述

redis 分布式锁:setnx实现

在这里插入图片描述

  • 30的并发失败率是60%,即只有12个成功的,最后redis的stock值是88符合预期

可以看到大部分没有抢到redis锁,而返回了系统繁忙错误

在这里插入图片描述

分布式锁的过期时间和看门狗

机器宕机可能导致finally释放锁失败,所以必须为redis key设置一个过期时间,但是设置的过期时间是多少是个问题?

  • 超时时间是个问题:因为业务时长不确定的;如果设置短了而业务执行很长,那么会由于过期时间删除了可以,那么锁会被其它业务线程给抢了

  • 其它线程可能删除别的线程的锁,因为锁没有什么标记

  • 改进1

@PostMapping(value = "/deduct_stock_lock")
public String deductStockLock() throws Exception {
    // setnx,redis单线程
    String lockKey = "lockKey";
    String clientId = UUID.randomUUID().toString();
    // 如下两句要原子操作
//        Boolean setOk = stringRedisTemplate.opsForValue().setIfAbsent(lockKey, lockVal);
//        stringRedisTemplate.expire(lockKey, 10 , TimeUnit.SECONDS); // 设置过期时间
    Boolean setOk = stringRedisTemplate.opsForValue().setIfAbsent(lockKey, clientId, 10, TimeUnit.SECONDS);
    if (!setOk) {
        throw new Exception("业务繁忙,请稍后再试");
    }

    String retVal;
    try {
        // 只有一个线程能执行成功,可能有业务异常抛出来,可能宕机等等;但无论如何要释放锁
        retVal = stockReduce();
    } finally {
        // 可能失败
        if (clientId.equals(stringRedisTemplate.opsForValue().get(lockKey))) {
            stringRedisTemplate.delete(lockKey);
        }
    }
    return retVal;
}
  • 过期时间短不够的问题:可以不断的定时设置,给锁续命: 看门狗;开启新线程,每隔一段时间,判断锁还在不在,然后重新设置过期时间
  • set key,value的时候,value设置为当前线程id,然后删除的时候判断下,确保删除正确
附:redis setnx相关命令和分布式锁
  1. setnx(SET if Not eXists)

  2. EXPIRE key seconds:设置key 的生存时间,当key过期(生存时间为0),会自动删除

如下,一个原子操作设置key:value,并设置10秒的超时

在这里插入图片描述

boolean lock(){
    ret = set key value(thread Id) 10 nx;
    if (!ret) {
        return false;
    }
    return true;
}

void unlock(){
    val = get key
    if ( val != null && val.equals( thread Id) ) {
       del key;
    }
}
Redisson

Redisson是一个基于Redis的Java客户端,提供了分布式锁的实现。其核心通过Redis的Lua脚本和原子操作保证锁的互斥性,支持可重入、公平锁、锁续期等功能。

代码&测试
@Bean
public Redisson redisson(){
    Config config = new Config();
    config.useSingleServer().setAddress("redis://localhost:6379").setDatabase(0);
    return (Redisson)Redisson.create(config);
}
@Autowired
private Redisson redisson;

@PostMapping(value = "/deduct_stock_redisson")
public String deductStockRedisson() throws Exception {
    String lockKey = "lockKey";
    RLock rLock = redisson.getLock(lockKey);
    String retVal;
    try {
        rLock.lock();
        // 只有一个线程能执行成功,可能有业务异常抛出来,可能宕机等等;但无论如何要释放锁
        retVal = stockReduce();
    } finally {
        rLock.unlock();
    }
    return retVal;
}

如下并发请求毫无问题:
在这里插入图片描述

Redisson 底层原理

在这里插入图片描述

  • setnx的设置key与过期时间用脚本实现原子操作
  • key设置成功默认30s,则有后台线程每10秒(1/3的原始过期时间定时检查)检查判断,延长过期时间
  • 未获取到锁的线程会自旋,直到那个获取到锁的线程将锁释放
实现可重入锁

value中多存储全局信息,可重入次数相关信息

{
    "count":1,
    "expireAt":147506817232,
    "jvmPid":22224, // jvm进程ID
    "mac":"28-D2-44-0E-0D-9A", // MAC地址
    "threadId":14 // 线程Id
}
redis分布式锁的问题?

Redis分布式锁会有个缺陷,就是在Redis哨兵模式下:

客户端1对某个master节点写入了redisson锁,此时会异步复制给对应的slave节点。但是这个过程中一旦发生master节点宕机,主备切换,slave节点从变为了master节点(但是锁信息是没有的)。这时客户端2来尝试加锁的时候,在新的master节点上也能加锁,此时就会导致多个客户端对同一个分布式锁完成了加锁。

这时系统在业务语义上一定会出现问题,导致各种脏数据的产生。缺陷在哨兵模式或者主从模式下,如果master实例宕机的时候,可能导致多个客户端同时完成加锁。

redis主从架构问题?

补充知识:redis单机qps支持:10w级别

redis主从架构是主同步到从,如果设置key成功,但是同步到还没结束就挂了;这样成为主,但是是没有key存在的,那么另一个线程又能够加锁成功。(redis主从架构锁失效问题?)

redis无法保证强一致性?zookeeper解决,但是zk性能不如redis

Redlock(超半数加锁成功才成功)

在这里插入图片描述

  • 加锁失败的回滚
  • redis加锁多,性能受影响
高并发分布式锁如何实现
  • 分段锁思想

基于ZooKeeper实现

回顾zookeeper的一些相关知识: 文件系统+监听通知机制

zookeeper节点类型
  1. PERSISTENT-持久节点

除非手动删除,否则节点一直存在于 Zookeeper 上; 重启Zookeeper后也会恢复

  1. EPHEMERAL-临时节点

临时节点的生命周期与客户端会话绑定,一旦客户端会话失效(客户端与zookeeper连接断开不一定会话失效),那么这个客户端创建的所有临时节点都会被移除。

  1. PERSISTENT_SEQUENTIAL-持久顺序节点

基本特性同持久节点,只是增加了顺序属性,节点名后边会追加一个由父节点维护的自增整型数字。

  1. EPHEMERAL_SEQUENTIAL-临时顺序节点

基本特性同临时节点,增加了顺序属性,节点名后边会追加一个由父节点维护的自增整型数字。

zookeeper的watch机制
  • 主动推送:watch被触发时,由zookeeper主动推送给客户端,而不需要客户端轮询
  • 一次性:数据变化时,watch只会被触发一次;如果客户端想得到后续更新的通知,必须要在watch被触发后重新注册一个watch
  • 可见性:如果一个客户端在读请求中附带 Watch,Watch 被触发的同时再次读取数据,客户端在得到 Watch消息之前肯定不可能看到更新后的数据。换句话说,更新通知先于更新结果
  • 顺序性:如果多个更新触发了多个 Watch ,那 Watch 被触发的顺序与更新顺序一致
zookeeper lock
普通临时节点(羊群效应)

在这里插入图片描述

比如1000个并发,只有1个客户端获取锁成功,其它999个客户端都处在监听并等待中;如果成功释放锁了,那么999个客户端都监听到,再次继续进行创建锁的流程。

所以每次锁有变化,几乎所有客户端节点都要监听并作出反应,这会给集群带来巨大压力,即为:羊群效应

顺序节点(公平,避免羊群效应)

在这里插入图片描述

  1. 首先需要创建一个父节点,尽量是持久节点(PERSISTENT类型)

  2. 每个要获得锁的线程都会在这个节点下创建个临时顺序节点,

  3. 由于序号的递增性,可以规定排号最小的那个获得锁。

  4. 所以,每个线程在尝试占用锁之前,首先判断自己是排号是不是当前最小,如果是,则获取锁。

利用顺序性:每个线程都只监听前一个线程,事件通知也只通知后面都一个线程,而不是通知全部,从而避免羊群效应

Curator InterProcessMutex(可重入公平锁)

curator官方文档

code&测试

实践代码链接

@Component
public class CuratorConfiguration {

    @Bean(initMethod = "start")
    public CuratorFramework curatorFramework() {
        RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3);
        CuratorFramework client = CuratorFrameworkFactory.newClient(
                "127.0.0.1:2181", retryPolicy);
        return client;
    }
}
 @Autowired
private CuratorFramework curatorFramework;

@PostMapping(value = "/deduct_stock_zk")
public String deductStockZk() throws Exception {
    String path = "/stock";
    InterProcessMutex interProcessMutex = new InterProcessMutex(curatorFramework, path);
    String retVal;
    try {
        interProcessMutex.acquire();
        retVal = stockReduce();
    } catch (Exception e) {
        throw new Exception("lock error");
    } finally {
        interProcessMutex.release();
    }
    return retVal;
}

在这里插入图片描述

  • 压测结果正常在这里插入图片描述

在这里插入图片描述

InterProcessMutex 内部原理
初始化
/**
* @param client client
* @param path   the path to lock
* @param driver lock driver
*/
public InterProcessMutex(CuratorFramework client, String path, LockInternalsDriver driver)
{
    this(client, path, LOCK_NAME, 1, driver);
}
 /**
    * Returns a facade of the current instance that tracks
    * watchers created and allows a one-shot removal of all watchers
    * via {@link WatcherRemoveCuratorFramework#removeWatchers()}
    *
    * @return facade
    */
public WatcherRemoveCuratorFramework newWatcherRemoveCuratorFramework();
加锁
private boolean internalLock(long time, TimeUnit unit) throws Exception
{
    /*
        Note on concurrency: a given lockData instance
        can be only acted on by a single thread so locking isn't necessary
    */

    Thread currentThread = Thread.currentThread();

    // 获取当前线程锁数据,获取到的化,设置可重入
    LockData lockData = threadData.get(currentThread);
    if ( lockData != null )
    {
        // re-entering
        lockData.lockCount.incrementAndGet();
        return true;
    }
    // 尝试获取锁
    String lockPath = internals.attemptLock(time, unit, getLockNodeBytes());
    if ( lockPath != null )
    {
        // 获取到锁,锁数据加入`threadData`的map结构中
        LockData newLockData = new LockData(currentThread, lockPath);
        threadData.put(currentThread, newLockData);
        return true;
    }

    // 没有获取到锁
    return false;
}
String attemptLock(long time, TimeUnit unit, byte[] lockNodeBytes) throws Exception
{
    final long      startMillis = System.currentTimeMillis();
    final Long      millisToWait = (unit != null) ? unit.toMillis(time) : null;
    final byte[]    localLockNodeBytes = (revocable.get() != null) ? new byte[0] : lockNodeBytes;
    int             retryCount = 0;

    String          ourPath = null;
    boolean         hasTheLock = false;
    boolean         isDone = false;
    while ( !isDone )
    {
        isDone = true;

        try
        {
            ourPath = driver.createsTheLock(client, path, localLockNodeBytes);
            hasTheLock = internalLockLoop(startMillis, millisToWait, ourPath);
        }
        catch ( KeeperException.NoNodeException e )
        {
            // gets thrown by StandardLockInternalsDriver when it can't find the lock node
            // this can happen when the session expires, etc. So, if the retry allows, just try it all again
            if ( client.getZookeeperClient().getRetryPolicy().allowRetry(retryCount++, System.currentTimeMillis() - startMillis, RetryLoop.getDefaultRetrySleeper()) )
            {
                isDone = false;
            }
            else
            {
                throw e;
            }
        }
    }

    if ( hasTheLock )
    {
        return ourPath;
    }

    return null;
}

创建锁是创建的临时顺序节点

@Override
public String createsTheLock(CuratorFramework client, String path, byte[] lockNodeBytes) throws Exception
{
    String ourPath;
    if ( lockNodeBytes != null )
    {
        ourPath = client.create().creatingParentContainersIfNeeded().withProtection().withMode(CreateMode.EPHEMERAL_SEQUENTIAL).forPath(path, lockNodeBytes);
    }
    else
    {
        ourPath = client.create().creatingParentContainersIfNeeded().withProtection().withMode(CreateMode.EPHEMERAL_SEQUENTIAL).forPath(path);
    }
    return ourPath;
}
watch
private boolean internalLockLoop(long startMillis, Long millisToWait, String ourPath) throws Exception
{
    boolean     haveTheLock = false;
    boolean     doDelete = false;
    try
    {
        if ( revocable.get() != null )
        {
            client.getData().usingWatcher(revocableWatcher).forPath(ourPath);
        }

        while ( (client.getState() == CuratorFrameworkState.STARTED) && !haveTheLock )
        {
            // 获取lock下所有节点数据,并排序
            List<String>        children = getSortedChildren();
            String              sequenceNodeName = ourPath.substring(basePath.length() + 1); // +1 to include the slash
            // 判断获取到锁
            PredicateResults    predicateResults = driver.getsTheLock(client, children, sequenceNodeName, maxLeases);
            if ( predicateResults.getsTheLock() )
            {
                haveTheLock = true;
            }
            else
            {
                String  previousSequencePath = basePath + "/" + predicateResults.getPathToWatch();
                synchronized(this)
                {
                    try
                    {
                        // use getData() instead of exists() to avoid leaving unneeded watchers which is a type of resource leak
                        // 监听前一个节点,并等待
                        client.getData().usingWatcher(watcher).forPath(previousSequencePath);
                        if ( millisToWait != null )
                        {
                            millisToWait -= (System.currentTimeMillis() - startMillis);
                            startMillis = System.currentTimeMillis();
                            if ( millisToWait <= 0 )
                            {
                                doDelete = true;    // timed out - delete our node
                                break;
                            }

                            wait(millisToWait);
                        }
                        else
                        {
                            wait();
                        }
                    }
                    catch ( KeeperException.NoNodeException e )
                    {
                        // it has been deleted (i.e. lock released). Try to acquire again
                    }
                }
            }
        }
    }
    catch ( Exception e )
    {
        ThreadUtils.checkInterrupted(e);
        doDelete = true;
        throw e;
    }
    finally
    {
        if ( doDelete )
        {
            deleteOurPath(ourPath);
        }
    }
    return haveTheLock;
}

是不是加锁成功:是不是最小的那个节点

@Override
public PredicateResults getsTheLock(CuratorFramework client, List<String> children, String sequenceNodeName, int maxLeases) throws Exception
{
    int             ourIndex = children.indexOf(sequenceNodeName);
    validateOurIndex(sequenceNodeName, ourIndex);

    boolean         getsTheLock = ourIndex < maxLeases;
    String          pathToWatch = getsTheLock ? null : children.get(ourIndex - maxLeases);

    return new PredicateResults(pathToWatch, getsTheLock);
}
释放锁

可重入判断;删除watchers,删除节点

/**
    * Perform one release of the mutex if the calling thread is the same thread that acquired it. If the
    * thread had made multiple calls to acquire, the mutex will still be held when this method returns.
    *
    * @throws Exception ZK errors, interruptions, current thread does not own the lock
    */
@Override
public void release() throws Exception
{
    /*
        Note on concurrency: a given lockData instance
        can be only acted on by a single thread so locking isn't necessary
        */

    Thread currentThread = Thread.currentThread();
    LockData lockData = threadData.get(currentThread);
    if ( lockData == null )
    {
        throw new IllegalMonitorStateException("You do not own the lock: " + basePath);
    }

    int newLockCount = lockData.lockCount.decrementAndGet();
    if ( newLockCount > 0 )
    {
        return;
    }
    if ( newLockCount < 0 )
    {
        throw new IllegalMonitorStateException("Lock count has gone negative for lock: " + basePath);
    }
    try
    {
        internals.releaseLock(lockData.lockPath);
    }
    finally
    {
        threadData.remove(currentThread);
    }
}
final void releaseLock(String lockPath) throws Exception
{
    client.removeWatchers();
    revocable.set(null);
    deleteOurPath(lockPath);
}

redis vs zookeeper AI回答

  1. 一致性模型
    Zookeeper 提供强一致性,这意味着当客户端在一个服务器上看到某个状态更新后,其他服务器也会立即反映这一变化。这种特性使得 Zookeeper 非常适合用于需要严格一致性的场景。

相比之下,Redis 默认提供最终一致性。虽然可以通过 Redlock 算法来增强其一致性保障4,但在某些极端情况下(如网络分区或主从延迟较高时),仍然可能存在短暂的数据不一致问题。

  1. 可靠性与容错能力
    Zookeeper 使用 Paxos 或 ZAB 协议构建高可用集群,在部分节点失效的情况下仍能保持服务正常运行。因此,即使少数节点发生故障,整个系统依然能够继续运作。

然而,标准的 Redis 实现存在单点故障风险。尽管引入 Sentinel 或 Cluster 模式可以在一定程度上缓解此问题,但如果主节点崩溃且未及时完成 failover,则可能导致锁丢失的情况出现。此外,由于 Redis 主从之间采用异步复制机制,可能会进一步加剧该类问题的发生概率。

  1. 性能表现
    在高频次、低延时需求下,Redis 显示出了显著的优势。它是一种内存级数据库,所有操作几乎都在 O(1) 时间复杂度内完成,这使其成为高性能应用场景下的理想选择。

而 Zookeeper 更注重于稳定性和一致性而非极致速度。对于那些对实时响应要求不高但强调可靠性的业务来说,Zookeeper 是更合适的选择。

  1. 功能扩展性
    借助 Redisson 库的支持,开发者能够在 Redis 基础之上轻松获得诸如可重入锁、自动续期以及公平锁等功能。这些额外的功能极大地增强了 Redis 锁机制的实际应用价值。

至于 Zookeeper,虽然原生 API 较为简单直接,但它允许用户自定义复杂的逻辑流程以满足特定需求。不过相较于 Redisson 所提供的开箱即用型解决方案而言,开发成本相对更高一些。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2385737.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用MybatisPlus实现sql日志打印优化

背景&#xff1a; 在排查无忧行后台服务日志时&#xff0c;一个请求可能会包含多个执行的sql&#xff0c;经常会遇到SQL语句与对应参数不连续显示&#xff0c;或者参数较多需要逐个匹配的情况。这种情况下&#xff0c;如果需要还原完整SQL语句就会比较耗时。因此&#xff0c;我…

client.chat.completions.create方法参数详解

response client.chat.completions.create(model"gpt-3.5-turbo", # 必需参数messages[], # 必需参数temperature1.0, # 可选参数max_tokensNone, # 可选参数top_p1.0, # 可选参数frequency_penalty0.0, # 可选参数presenc…

深入浅出人工智能:机器学习、深度学习、强化学习原理详解与对比!

各位朋友&#xff0c;大家好&#xff01;今天咱们聊聊人工智能领域里最火的“三剑客”&#xff1a;机器学习 (Machine Learning)、深度学习 (Deep Learning) 和 强化学习 (Reinforcement Learning)。 听起来是不是有点高大上&#xff1f; 别怕&#xff0c;我保证把它们讲得明明…

基于 ColBERT 框架的后交互 (late interaction) 模型速递:Reason-ModernColBERT

一、Reason-ModernColBERT 模型概述 Reason-ModernColBERT 是一种基于 ColBERT 框架的后交互 (late interaction) 模型&#xff0c;专为信息检索任务中的推理密集型场景设计。该模型在 reasonir-hq 数据集上进行训练&#xff0c;于 BRIGHT 基准测试中取得了极具竞争力的性能表…

vector中reserve导致的析构函数问题

接上一节vector实现&#xff0c;解决杨辉三角问题时&#xff0c;我在最后调试的时候&#xff0c;发现return vv时&#xff0c;调用析构函数&#xff0c;到第四步时才析构含有14641的vector。我设置了一个全局变量i来记录。 初始为35&#xff1a; 当为39时&#xff0c;也就是第…

微软开源多智能体自定义自动化工作流系统:构建企业级AI驱动的智能引擎

微软近期推出了一款开源解决方案加速器——Multi-Agent Custom Automation Engine Solution Accelerator,这是一个基于AI多智能体协作的自动化工作流系统。该系统通过指挥多个智能体(Agent)协同完成复杂任务,显著提升企业在数据处理、业务流程管理等场景中的效率与准确性。…

安卓无障碍脚本开发全教程

文章目录 第一部分&#xff1a;无障碍服务基础1.1 无障碍服务概述核心功能&#xff1a; 1.2 基本原理与架构1.3 开发环境配置所需工具&#xff1a;关键依赖&#xff1a; 第二部分&#xff1a;创建基础无障碍服务2.1 服务声明配置2.2 服务配置文件关键属性说明&#xff1a; 2.3 …

SOC-ESP32S3部分:10-GPIO中断按键中断实现

飞书文档https://x509p6c8to.feishu.cn/wiki/W4Wlw45P2izk5PkfXEaceMAunKg 学习了GPIO输入和输出功能后&#xff0c;参考示例工程&#xff0c;我们再来看看GPIO中断&#xff0c;IO中断的配置分为三步 配置中断触发类型安装中断服务注册中断回调函数 ESP32-S3的所有通用GPIO…

战略-2.1 -战略分析(PEST/五力模型/成功关键因素)

战略分析路径&#xff0c;先宏观&#xff08;PEST&#xff09;、再产业&#xff08;产品生命周期、五力模型、成功关键因素&#xff09;、再竞争对手分析、最后企业内部分析。 本文介绍&#xff1a;PEST、产品生命周期、五力模型、成功关键因素、产业内的战略群组 一、宏观环境…

python第三方库安装错位

问题所在 今天在安装我的django库时&#xff0c;我的库安装到了python3.13版本。我本意是想安装到python3.11版本的。我的pycharm右下角也设置了python3.11 但是太可恶了&#xff0c;我在pycharm的项目终端执行安装命令的时候还是给我安装到了python3.13的位置。 解决方法 我…

如何把vue项目部署在nginx上

1&#xff1a;在vscode中把vue项目打包会出现dist文件夹 按照图示内容即可把vue项目部署在nginx上

Vue3集成Element Plus完整指南:从安装到主题定制下-实现后台管理系统框架搭建

本文将详细介绍如何使用 Vue 3 构建一个综合管理系统&#xff0c;包括路由配置、页面布局以及常用组件集成。 一、路由配置 首先&#xff0c;我们来看系统的路由配置&#xff0c;这是整个应用的基础架构&#xff1a; import {createRouter, createWebHistory} from vue-rout…

SpringBoot项目配置文件、yml配置文件

一. 配置文件格式 1. SpringBoot项目提供了多种属性配置方式(properties、yaml、yml)。 二. yml配置文件 1. 格式&#xff1a; (1) 数值前边必须有空格&#xff0c;作为分隔符。 (2) 使用缩进表示层级关系&#xff0c;缩进时&#xff0c;不允许使用Tab键&#xff0c;只能使用空…

windows11 安装 jupyter lab

1、安装python环境 略 2、安装jupyterlab pip install jupyterlab 3、将jupyterlab的目录配置到path pip show jupyterlab 看到location的值&#xff0c;那么 jupyterlab就安装在与之同级的Scripts下&#xff0c;将Scripts目录设置在Path即可。

【算法】:动态规划--背包问题

背包问题 引言 什么是背包问题&#xff1f; 背包问题就是一个有限的背包&#xff0c;给出一定的物品&#xff0c;如何合理的装入物品使得背包中的物品的价值最大&#xff1f; 01背包 01背包&#xff0c;顾名思义就是每一种给定的物品要么选择&#xff0c;要么不选&#xff…

Nginx核心功能

目录 前言一. 正向代理1.配置正向代理&#xff08;1&#xff09;添加正向代理&#xff08;2&#xff09;验证正向代理 二. 反向代理1.配置nginx七层代理&#xff08;1&#xff09;环境安装&#xff08;2&#xff09;配置nginx七层代理转发&#xff08;3&#xff09;测试 2. 配置…

upload-labs通关笔记-第15关 文件上传之图片马getimagesize绕过

系列目录 upload-labs通关笔记-第1关 文件上传之前端绕过&#xff08;3种渗透方法&#xff09; upload-labs通关笔记-第2关 文件上传之MIME绕过-CSDN博客 upload-labs通关笔记-第3关 文件上传之黑名单绕过-CSDN博客 upload-labs通关笔记-第4关 文件上传之.htacess绕过-CSDN…

【游戏设计】游戏玩法与游戏机制

在游戏设计中&#xff0c;“玩法”&#xff08;Gameplay&#xff09;和“机制”&#xff08;Game Mechanic&#xff09;是两个频繁出现但容易混淆的概念。许多新手开发者、设计师甚至玩家常常将两者混为一谈。本文将通过定义、对比和案例解析的方式&#xff0c;清晰地阐明二者的…

Spring的资源Resource和ResourceLoader

两者区别和联系 Resource 和ResourceLoader 都是 Spring 框架中用于资源访问的接口 Resource 是“资源本身”&#xff0c;ResourceLoader 是“资源工厂/加载器”&#xff0c;负责创建 Resource。 ​ Resource:Spring 统一抽象的“资源”对象,可以表示文件、类路径下的文件、U…

【AI实战】从“苦AI”到“爽AI”:Magentic-UI 把“人类-多智能体协作”玩明白了!

Hello&#xff0c;亲爱的小伙伴们&#xff01;你是否曾经在深夜里&#xff0c;为了自动化点外卖、筛机票、抓网页数据焦头烂额&#xff1f;有没有幻想过哪天能出个“贴心AI管家”&#xff0c;一键点菜、搞定事务、自动操作网页&#xff0c;比你还懂你&#xff1f;更关键——还让…