一文掌握工业相机选型计算

news2025/5/20 4:36:15

目录

一、基本概念

1.1 物方和像方

1.2 工作距离和视场

1.3 放大倍率

1.4 相机芯片尺寸

二、公式计算

三、实例应用


一、基本概念

1.1 物方和像方

在光学领域,物方(Object Space)是与像方(Image Space)相对的概念,用于描述光学系统中光线或物体所在的空间区域。

  • 物方:指光学系统(如镜头、相机)中,实际物体所处的空间范围,即被观察、拍摄的对象所在的物理空间。
  • 像方:指光学系统中,物体通过光学元件成像后所在的空间范围(如相机传感器、胶片上的成像区域)。

1.2 工作距离和视场

(1)镜头工作距离(WD):镜头物方端面到被拍摄物体表面的物理距离。

(2)光源工作距离(LWD):光源物方端面到被照射物体表面 的物理距离。

(3)视场(FOV):也称视野,是指能被视觉系统观察到的物方可视范围大小。

对于镜头而言,可观察到的视场跟镜头放大倍率及相机芯片选择有关。因此通常建议根据被观察物体的尺寸,先确定所需的视场,再确定相机芯片尺寸及镜头放大倍率。在实际工程项目中,考虑到机械误差等问题,视场通常要大于待观测物体的实际尺寸,以确保在机械误差的范围内,物体始终位于视觉系统的可视范围内。

1.3 放大倍率

机器视觉行业里提到的镜头光学放大倍率通常是指垂轴放大倍率,即像和物的大小之比,计算方法如下:

 光学放大倍率=感光芯片长边/视野长边

 可见,光学放大倍率和所选相机芯片及所需视场相关。

【示例1】

问题:已知相机芯片为2/3英寸(8.8mm*6.6mm),视场长宽为:10mm* 8mm,计算放大倍率。

解答

如用长边计算,放大倍率=8.8mm/10mm=0.88x;

如用短边计算,放大倍率=6.6mm/8mm=0.825x;

此时应取小的倍率0.825x 作为待选镜头的光学放大倍率。否则,短边视场将不能满足要求。(若取0.88倍,则短边视场=6.6mm/0.88x=7.5mm<8mm)。

在实际工程项目中,通常无需长短边都计算。经验的方法是:若视场接近于正方形或圆形,则取短边计算;若视场为长条形,则取长边计算。

1.4 相机芯片尺寸

在前面描述放大倍率和镜头像面尺寸时都涉及到相机芯片尺寸。通常相机厂商是以英寸的形式表示的,但在实际计算时,需要换算成各边以毫米为单位的计量方式。

但对于相机芯片尺寸而言,1 inch≠ 25.4mm,而有其特有的换算关系。以下是常见的尺寸对应关系:

1.1英寸——靶面尺寸为宽12mm*高12mm,对角线17mm

1英寸 ——靶面尺寸为宽12.7mm*高9.6mm,对角线16mm

2/3英寸——靶面尺寸为宽8.8mm*高6.6mm,对角线11mm 

1/1.8英寸——靶面尺寸为宽7.2mm*高5.4mm,对角线9mm

1/2英寸——靶面尺寸为宽6.4mm*高4.8mm,对角线8mm

1/3英寸——靶面尺寸为宽4.8mm*高3.6mm,对角线6mm 

1/4英寸——靶面尺寸为宽3.2mm*高2.4mm,对角线4m

最准确的芯片尺寸计算方法是:

相机像素颗数x像素尺寸=芯片尺寸。如某相机分辨率为5120x5120, 像素尺寸为4.5µmx4.5µm, 则芯片为正方形,边长=5120x4.5µm=23040µm=23.04mm。

二、公式计算

根据前面的概念介绍,可以得出面阵相机镜头选型的核心计算公式:

光学放大倍率   =   相机芯片长度 / 视野长边   =  焦距f  /  工作距离WD

示意图如下:

按照前面的核心公式,工业镜头的焦距(f mm)可以根据FOV(视场), WD(工作距离) 和芯片尺寸计算出来:

焦距计算公式:

焦距f = WD × 芯片尺寸 / FOV

三、实例应用

问题:已知参数如下:

(1)相机配置为: 芯片长宽为5.7*4.3mm, 分辨率为:2592*1944, 像元尺寸为2.2*2.2um

(2)物距:60mm

(3)视野大小:12mm*9mm

应选择何种镜头?

答案:按照前面公式  焦距1 = 60*4.3/9 = 28.7    焦距2 = 60*5.7/12 = 28.5

为了能覆盖视野,选择更短的焦距,因此应选择28.5mm焦距的镜头。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2379712.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LabVIEW机械振动信号分析与故障诊断

利用 LabVIEW 开发机械振动信号分析与故障诊断系统&#xff0c;融合小波变换、时频分布、高阶统计量&#xff08;双谱&#xff09;等先进信号处理技术&#xff0c;实现对齿轮、发动机等机械部件的非平稳非高斯振动信号的特征提取与故障诊断。系统通过虚拟仪器技术将理论算法转化…

【Spring】Spring中的适配器模式

欢迎来到啾啾的博客&#x1f431;。 记录学习点滴。分享工作思考和实用技巧&#xff0c;偶尔也分享一些杂谈&#x1f4ac;。 欢迎评论交流&#xff0c;感谢您的阅读&#x1f604;。 目录 适配器模式Spring MVC的适配器模式 适配器模式 适配器模式&#xff08;Adapter Pattern&a…

2、ubuntu系统配置OpenSSH | 使用vscode或pycharm远程连接

1、OpenSSH介绍 OpenSSH&#xff08;Open Secure Shell&#xff09;是一套基于SSH协议的开源工具&#xff0c;用于在计算机网络中提供安全的加密通信。它被广泛用于远程系统管理、文件传输和网络服务的安全隧道搭建&#xff0c;是保护网络通信免受窃听和攻击的重要工具。 1.1…

RPC与SOAP的区别

一.RPC&#xff08;远程过程调用&#xff09;和SOAP&#xff08;简单对象访问协议&#xff09;均用于实现分布式系统中的远程通信&#xff0c;但两者在设计理念、协议实现及应用场景上存在显著差异。 二.对比 1.设计理念 2.协议规范 3.技术特性 4.典型应用场景 5.总结 三.总结…

Day11-苍穹外卖(数据统计篇)

前言&#xff1a; 今天写day11的内容&#xff0c;主要讲了四个统计接口的制作。看起来内容较多&#xff0c;其实代码逻辑都是相似的&#xff0c;这里我们过一遍。 今日所学&#xff1a; Apache ECharts营业额统计用户统计订单统计销量排行统计 1. Apache ECharts 1.1 介绍 A…

Tomcat简述介绍

文章目录 Web服务器Tomcat的作用Tomcat分析目录结构 Web服务器 Web服务器的作用是接收客户端的请求&#xff0c;给客户端作出响应。 知名Java Web服务器 Tomcat&#xff08;Apache&#xff09;&#xff1a;用来开发学习使用&#xff1b;免费&#xff0c;开源JBoss&#xff0…

《从零开始:Spring Cloud Eureka 配置与服务注册全流程》​

关于Eureka的学习&#xff0c;主要学习如何搭建Eureka&#xff0c;将order-service和product-service都注册到Eureka。 1.为什么使用Eureka? 我在实现一个查询订单功能时&#xff0c;希望可以根据订单中productId去获取对应商品的详细信息&#xff0c;但是产品服务和订单服…

FPGA学习知识(汇总)

1. wire与reg理解&#xff0c;阻塞与非阻塞 2. 时序取值&#xff0c;时钟触发沿向左看 3. ip核/setup debug 添加 ila 一、ila使用小技巧 二、同步复位、异步复位和异步复位同步释放 设计复位设计&#xff0c;尽量使用 异步复位同步释放&#xff1b;尽管该方法仍然对毛刺敏感…

Redisson分布式锁-锁的可重入、可重试、WatchDog超时续约、multLock联锁(一文全讲透,超详细!!!)

本文涉及到使用Redis实现基础分布式锁以及Lua脚本的内容&#xff0c;如有需要可以先参考博主的上一篇文章&#xff1a;Redis实现-优惠卷秒杀(基础版本) 一、功能介绍 (1)前面分布式锁存在的问题 在JDK当中就存在一种可重入锁ReentrantLock&#xff0c;可重入指的是在同一线…

语言模型:AM-Thinking-v1 能和大参数语言模型媲美的 32B 单卡推理模型

介绍 a-m-team 是北科 &#xff08;Ke.com&#xff09; 的一个内部团队&#xff0c;致力于探索 AGI 技术。这是一个专注于增强推理能力的 32B 密集语言模型。 a-m-team / AM-Thinking-v1 是其旗下的一个语言模型&#xff0c;采用低成本的方式能实现和大参数模型媲美。 DeepSe…

ChatGPT:OpenAI Codex—一款基于云的软件工程 AI 代理,赋能 ChatGPT,革新软件开发模式

ChatGPT&#xff1a;OpenAI Codex—一款基于云的软件工程 AI 代理&#xff0c;赋能 ChatGPT&#xff0c;革新软件开发模式 导读&#xff1a;2025年5月16日&#xff0c;OpenAI 发布了 Codex&#xff0c;一个基于云的软件工程 AI 代理&#xff0c;它集成在 ChatGPT 中&#xff0c…

智能视觉检测技术:制造业质量管控的“隐形守护者”

在工业4.0浪潮的推动下&#xff0c;制造业正经历一场以智能化为核心的变革。传统人工质检模式因效率低、误差率高、成本高昂等问题&#xff0c;逐渐难以满足现代生产对高精度、高速度的需求。智能视觉检测技术作为人工智能与机器视觉融合的产物&#xff0c;正成为制造业质量管控…

利用html制作简历网页和求职信息网页

前言 大家好&#xff0c;我是maybe。今天下午初步学习了html的基础知识。做了两个小网页&#xff0c;一个网页是简历网页&#xff0c;一个网页是求职信息填写网页。跟大家分享一波~ 说明:我不打算上传图片。所以如果有朋友按照我的代码运行网页&#xff0c;会出现一个没有图片…

卷积神经网络进阶:转置卷积与棋盘效应详解

【内容摘要】 本文深入解析卷积神经网络中的转置卷积&#xff08;反卷积&#xff09;技术&#xff0c;重点阐述标准卷积与转置卷积的计算过程、转置卷积的上采样作用&#xff0c;以及其常见问题——棋盘效应的产生原因与解决方法&#xff0c;为图像分割、超分辨率等任务提供理论…

2025年5月13日第一轮

1.百词斩 2.安全状态和死锁 3.银行家算法和状态图 4.Vue运行 5.英语听力 6.词汇 7.英语 长篇:数学竞赛 8.数学 间断点类型和数量 The rapid development of artificial intelligence has led to widerspareasd concreasns about job displacemant.As AI technology conti…

小结:Android系统架构

https://developer.android.com/topic/architecture?hlzh-cn Android系统的架构&#xff0c;分为四个主要层次&#xff1a;应用程序层、应用框架层、库和运行时层以及Linux内核层。&#xff1a; 1. 应用程序层&#xff08;Applications&#xff09; 功能&#xff1a;这一层包…

基于C#的MQTT通信实战:从EMQX搭建到发布订阅全解析

MQTT(Message Queueing Telemetry Transport) 消息队列遥测传输&#xff0c;在物联网领域应用的很广泛&#xff0c;它是基于Publish/Subscribe模式&#xff0c;具有简单易用&#xff0c;支持QoS&#xff0c;传输效率高的特点。 它被设计用于低带宽&#xff0c;不稳定或高延迟的…

ISP中拖影问题的处理

有时候会出现如下的阴影问题该如何处理呢&#xff1f;本文将提供几个思路。 1、降低曝光时间 如果曝光时间过大&#xff0c;会统计整个曝光时间内的图像信息&#xff0c;就会导致拖影的产生&#xff0c;这个时候可以考虑降低一下曝光时间。 2、时域降噪过大 只要明白时域降噪…

SQLMesh 模型管理指南:从创建到验证的全流程解析

本文全面介绍SQLMesh这一现代化数据转换工具的核心功能&#xff0c;重点讲解模型创建、编辑、验证和删除的全生命周期管理方法。通过具体示例和最佳实践&#xff0c;帮助数据工程师掌握SQLMesh的高效工作流程&#xff0c;包括增量模型配置、变更影响评估、安全回滚机制等关键操…

HarmonyOS AVPlayer 音频播放器

鸿蒙文档中心&#xff1a;使用AVPlayer播放视频(ArkTS)文档中心https://developer.huawei.com/consumer/cn/doc/harmonyos-guides/video-playback 这张图描述的是 HarmonyOS AVPlayer 音频播放器的状态流转过程&#xff0c;展示了 AVPlayer 在不同状态之间的切换条件和关键操作…